题面在这里

题意

一个王国中的所有城市构成了一棵有根树,其根节点为首都,编号为1

树有边权,城市的记者每次向祖先移动\(d\)的路程需要的代价为\(d^2\),

如果祖先不是根还需要加上\(p\),求每个非根节点的记者移动到首都的最小代价

sol

考虑朴素的DP,设\(f[i]\)表示第\(i\)号节点到达根节点的最小代价,

\(s[i]\)表示\(i\)到根节点的距离,那么有

\[f[i]=min_{j\in ancestor(i)}(f[j]+(s[i]-s[j])^2+p)
\]

初始状态为\(f[1]=-p\)

斜率优化:

\[f[i]=min_{j\in ancestor(i)}(f[j]+s[j]^2-2s[i]s[j])+s[i]^2+p
\]

那么考虑插点\((2s[j],f[j]+s[j]^2)\),询问斜率\(k_i=s[i]\);

树上斜率优化——可持久化单调队列

由于是在树上做,那么我们需要支持撤销前一次的操作;

我们对于记录一个栈,记录推到这个节点时弹出了哪些节点,

撤回的时候在队列中删掉当前节点,把之前弹出的节点放回去即可

这样的时间复杂度应该仍为\(O(n)\)

代码

#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define mp make_pair
#define pub push_back
#define puf push_front
#define pob pop_back
#define pof pop_front
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-10;
const int mod=1e8;
const int N=1000010;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
} il void file(){
freopen(".in","r",stdin);
freopen(".out","w",stdout);
} ll T,n,p,f[N],s[N];
int head[N],nxt[N<<1],to[N<<1],val[N<<1],cnt;
il void add(ll u,ll v,ll w){
to[++cnt]=v;
nxt[cnt]=head[u];
val[cnt]=w;
head[u]=cnt;
} int L=1,R;ll qx[N],qy[N];
int cal[N],top;ll calx[N],caly[N];
il void cancel(int u){
R--;
while(cal[top]==u){
R++;qx[R]=calx[top];qy[R]=caly[top];top--;
}
} il void insert(int u,ll x,ll y){
while(L<R&&(qy[R]-qy[R-1])*(x-qx[R])>=(y-qy[R])*(qx[R]-qx[R-1])){
cal[++top]=u;calx[top]=qx[R];caly[top]=qy[R];R--;
}
R++;qx[R]=x;qy[R]=y;
} il int check(ll k,int mid){
if(mid!=R&&k*(qx[mid+1]-qx[mid])>qy[mid+1]-qy[mid])
return 1;
if(mid!=L&&k*(qx[mid]-qx[mid-1])<qy[mid]-qy[mid-1])
return -1;
return 0;
}
//二分斜率
il ll query(ll k){
RG int l=L,r=R,mid,ret;
while(l<=r){
mid=(l+r)>>1;
ret=check(k,mid);
if(!ret)return qy[mid]-k*qx[mid];
else if(ret==1)l=mid+1;
else if(ret==-1)r=mid-1;
}
} void dfs_DP(int u,int fa){
if(u!=1){
f[u]=query(s[u])+s[u]*s[u]+p;
insert(u,2*s[u],f[u]+s[u]*s[u]);
}
else insert(u,0,-p);
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==fa)continue;
s[v]=s[u]+val[i];dfs_DP(v,u);
}
cancel(u);
} il void solve(){
memset(head,0,sizeof(head));cnt=0;L=1;R=0;
n=read();p=read();
RG ll u,v,w;
for(RG int i=1;i<n;i++){
u=read();v=read();w=read();
add(u,v,w);add(v,u,w);
} dfs_DP(1,0); RG ll maxn=0;
for(RG int i=1;i<=n;i++)
maxn=max(maxn,f[i]);
printf("%lld\n",maxn);
} int main()
{
T=read();while(T--)solve();return 0;
}

[HDU5956]The Elder的更多相关文章

  1. 《The Elder Scrolls V: Skyrim》百般冷门却强力职业

    <The Elder Scrolls V: Skyrim>百般冷门却强力职业 1.有如成龙平常的杂耍型战斗窃贼 每次看帖都察觉大伙一贯在强调窃贼不需要防御,窃贼不需要血,窃贼就是一击致命, ...

  2. hdu 5956 The Elder

    http://acm.hdu.edu.cn/showproblem.php?pid=5956 转移方程:dp[i]=(dis[i]-dis[j])*(dis[i]-dis[j])+P+dp[j] 斜率 ...

  3. HDU 5956 The Elder (树上斜率DP)

    题意:给定上一棵树,然后每条边有一个权值,然后每个点到 1 的距离有两种,第一种是直接回到1,花费是 dist(1, i)^2,还有另一种是先到另一个点 j,然后两从 j 向1走,当然 j 也可以再向 ...

  4. HDU - 59562016ACM/ICPC亚洲区沈阳站I - The Elder 树上斜率优化dp

    题意:给定上一棵树,然后每条边有一个权值,然后每个点到 1 的距离有两种,第一种是直接回到1,花费是 dist(1, i)^2,还有另一种是先到另一个点 j,然后两从 j 向1走,当然 j 也可以再向 ...

  5. 【HDOJ5956】The Elder(树形DP,斜率优化)

    题意:有一棵n个点的有根树,每条边上有一个边权.给定P,从i跳到它的祖先j的费用是距离的平方+P,问所有点中到根节点1的总花费最大值 n<=1e5,p<=1e6,w<=1e2 思路: ...

  6. The Elder HDU - 5956

    /* 树上斜率优化 一开始想的是构造出一个序列 转化成一般的dp但是可能被卡 扫把状的树的话可能变成n*n 其实可以直接在树上维护这个单调队列 dfs虽然搞得是一棵树,但是每次都是dfs到的都是一个序 ...

  7. ACM-ICPC 2016 沈阳赛区现场赛 I. The Elder && HDU 5956(斜率DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5956 题意:一颗树上每条边有个权值,每个节点都有新闻要送到根节点就是1节点,运送过程中如果不换青蛙就是 ...

  8. LuoguP7369 [COCI2018-2019#4] Elder 题解

    Content 有一个魔杖最初在 \(Z\) 巫师中.经过 \(n\) 轮较量,第 \(i\) 轮中,\(Z_{i,1}\) 巫师打败了 \(Z_{i,2}\) 巫师.如果一个巫师打败了拥有魔杖的巫师 ...

  9. poj 1251 Jungle Roads (最小生成树)

    poj   1251  Jungle Roads  (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...

随机推荐

  1. 配置Struts2及Struts2访问servlet api的方式

    Struts2的起源与背景 在很长的一段时间内,在所有的MVC框架中,Struts1处于绝对的统治地位,无论是从市场的普及范围,还是具体的使用者数量. 其他MVC框架都无 法与其相比,作为一一款优秀的 ...

  2. jQuery获取data-*属性值

    下面就详细介绍四种方法获取data-*属性的值 <li id="getId" data-id="122" data-vice-id="11&qu ...

  3. flask钩子

    请求钩子  从请求到响应的过程中,设置了一些方法来实现某些功能 before_first_request   在处理第一个请求前运行 before_request  在每次请求前运行 after_re ...

  4. unity独立游戏开发日志2018/09/22

    f::很头痛之前rm做的游戏在新电脑工程打不开了...只能另起炉灶... 还不知道新游戏叫什么名...暂且叫方块世界.(素材已经授权) 首先是规划下场景和素材文件夹的建立. unity常用的文件夹有: ...

  5. (数据科学学习手札03)Python与R在随机数生成上的异同

    随机数的使用是很多算法的关键步骤,例如蒙特卡洛法.遗传算法中的轮盘赌法的过程,因此对于任意一种语言,掌握其各类型随机数生成的方法至关重要,Python与R在随机数底层生成上都依靠梅森旋转(twiste ...

  6. R语言学习笔记(十六):构建分割点函数

    选取预测概率的分割点 cutoff<- function(n,p){ pp<-1 i<-0 while (pp>=0.02) { model.predfu<-rep(&q ...

  7. react项目中引入百度地图打包报错问题

    一.我正常引入百度地图,调试时候是好使的,但是打包时候就报错 引入方法如下: 报错如图 正常调试是好使的,但是打包报这个错,解析不了这个BMap,那么怎么办呢? 然后我就转用了window办法,虽然因 ...

  8. shell重温---基础篇(连接数据库)

    前几天分享了shell字符串操作,数组操作等,接下来回归到项目,进行数据库操作.按照一般情况来说,shell连接数据库基本上都是DB使用的,因为需要运行大量的sql啊什么的,所以都会封装到shell中 ...

  9. 关于PHP性能提升踩过的一些坑

        性能这个东西,在网站规模到达一定程度后,会是一个永恒的主题.关于这方面,本人有一些拙见,现在拿出来,大家一起探讨下.     1.编码过程中,传递参数时,尽量少使用‘引用传参’.这是一个巨坑啊 ...

  10. mysql用命令创建用户创建数据库设置权限

     1.create database bbs; //创建数据库 2.create user bbs IDENTIFIED by 'bbs';  //创建用户bbs和登录密码bbs 3.grant AL ...