Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414
题意:一只青蛙在X1,Y1的石头上,他要到X2,Y2的石头上续人,池塘上除了1、2两块石头外还有n-2块石头坐标分别为X3,Y3;X4,Y4……Xn,Yn
定义青蛙的跳跃范围为从石头一到石头二路径上所跳跃的最远距离,求跳跃范围的最小值
题解:spfa的判断稍微换一下就行了~
但要注意poj上.3f与.3lf的区别…….3f是不能用的
代码如下:
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std; vector< pair<int,double> > g[];
double d[],x[],y[];
int vis[],n; void spfa(int u)
{
memset(vis,,sizeof(vis));
for(int i=; i<=n; i++)
{
d[i]=inf;
}
d[u]=;
queue<int> q;
q.push(u);
while(!q.empty())
{
int x=q.front();
q.pop();
vis[x]=;
int sz=g[x].size();
for(int i=; i<sz; i++)
{
int y=g[x][i].first;
double w=g[x][i].second;
if(max(d[x],w)<d[y])
{
d[y]=max(d[x],w);
if(!vis[y])
{
q.push(y);
vis[y]=;
}
}
}
}
} int main()
{
int ttt=;
while(scanf("%d",&n),n)
{
ttt++;
for(int i=;i<=n;i++)
{
g[i].clear();
}
for(int i=; i<=n; i++)
{
scanf("%lf%lf",&x[i],&y[i]);
}
for(int i=; i<=n; i++)
{
for(int j=i+; j<=n; j++)
{
double dx=x[i]-x[j],dy=y[i]-y[j];
double dist=sqrt(dx*dx+dy*dy);
g[i].push_back(make_pair(j,dist));
g[j].push_back(make_pair(i,dist));
}
}
spfa();
printf("Scenario #%d\n",ttt);
printf("Frog Distance = %.3f\n",d[]);
printf("\n");
} }


POJ2253 Frogger(spfa变形)的更多相关文章

  1. POJ2253——Frogger(Floyd变形)

    Frogger DescriptionFreddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fi ...

  2. poj2253 Frogger Dijkstra变形

    题目链接:http://poj.org/problem?id=2253 就是求所有路径的最大边权值的最小值 处理时每次找出距离当前的已选的节点的最短距离,然后更新每个未选节点的值 代码: #inclu ...

  3. NOIP2009最优贸易[spfa变形|tarjan 缩点 DP]

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  4. POJ2253 Frogger —— 最短路变形

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  5. POJ-2253.Frogger.(求每条路径中最大值的最小值,最短路变形)

    做到了这个题,感觉网上的博客是真的水,只有kuangbin大神一句话就点醒了我,所以我写这篇博客是为了让最短路的入门者尽快脱坑...... 本题思路:本题是最短路的变形,要求出最短路中的最大跳跃距离, ...

  6. POJ-2253 Frogger(最短路)

    https://vjudge.net/problem/POJ-2253 题意 公青蛙想到母青蛙那里去,期间有许多石头,公青蛙可以通过这些石头跳过去.问至少要跳的最大距离,即所有路径上石头间的最大距离的 ...

  7. poj2253 Frogger(Floyd)

    题目链接 http://poj.org/problem?id=2253 题意 给出青蛙A,B和若干石头的坐标,现在青蛙A要跳到青蛙B所在的石头上,求出所有路径中最远那一跳的最小值. 思路 Floyd算 ...

  8. UVA 11280 - Flying to Fredericton SPFA变形

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&c ...

  9. POJ-2253(最短路变形+dijikstra算法+求解所有路径中所有最长边中的一个最小值)

    frogger POJ-2253 这题的代码特别像prim求解最小生成树的代码,其实两者本来也很像. 这里的d数组不再维护的起点到该点的最短距离了,而是路径中的最长距离. #include<io ...

随机推荐

  1. 【转】Jmeter基础之——jmeter基础概念

    JMeter 介绍:一个非常优秀的开源的性能测试工具. 优点:你用着用着就会发现它的重多优点,当然不足点也会呈现出来. 从性能工具的原理划分: Jmeter工具和其他性能工具在原理上完全一致,工具包含 ...

  2. Effective java笔记3--类和接口1

    一.使类和成员的可访问能力最小化 要想区别一个设计良好的模块与一个设计不好的模块,最重要的因素是,这个模块对于外部的其他模块而言,是否隐藏了内部的数据和其他的实现细节.一个设计良好的模块会隐藏所有的实 ...

  3. JS面向对象编程,对象,属性,方法。

    document.write('<script type="text/javascript" src="http://api.map.baidu.com/api?v ...

  4. 3 SpringBoot与微服务

    SpringBoot的使用? 化繁为简: Spring MVC 需要定义各种配置,配置文件多. SpringBoot的核心功能? 独立运行: java -jar XXX.jar (以前启动SPring ...

  5. 基于Nfs和Samba的Lamp环境实现

    一 系统环境二 网络文件系统与web环境的结合三 搭建lamp环境四 实现nfs服务五 实现samba服务六 实现效果 一 系统环境 系统平台:CentOS release 6.8 (Final) L ...

  6. DVWA平台v1.8-反射型XSS(low级别)

    源代码 <?php if(!array_key_exists ("name", $_GET) || $_GET['name'] == NULL || $_GET['name' ...

  7. springboot成神之——application.properties所有可用属性

    application.properties所有可用属性 # =================================================================== # ...

  8. javascript原型继承中的两种方法对比

    在实际的项目中,我们通常都是用构造函数来创建一个对象,再将一些常用的方法添加到其原型对象上.最后要么直接实例化该对象,要么将它作为父类,再申明一个对象,继承该父类. 而在继承的时候有两种常用方式,今天 ...

  9. MyEclipse jQuery智能 提示

    jQuery智能 MyEclipse Spket IDE 1.6.23 http://www.spket.com/download.html Plugin 1.6.23 5.62 MB Minimum ...

  10. Mycat主从模式下的读写分离与自动切换

    1. 机器环境 192.168.2.136 mycat1 192.168.2.134 mydb1 192.168.2.135 mydb2 2在mysql1.mysql2上安装mysql 更改root用 ...