2818: Gcd

Time Limit: 10 Sec Memory Limit: 256 MB

Submit: 6826 Solved: 3013

[Submit][Status][Discuss]

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的

数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

题解

一般gcd一堆求和都是莫比乌斯

我们设f(n)表示gcd等于n的对数

我们设F(n)表示n|gcd的对数

则有

F(n)=⌊Nn⌋2

f(n)=∑n|dμ(dn)F(d)

=∑n|dμ(dn)⌊Nn⌋2

=∑Ni=1μ(i)⌊Ni∗n⌋2

ans=∑Np∈prime∑Ni=1μ(i)⌊Ni∗p⌋2

=∑NT=1⌊NT⌋2∗∑Np|Tμ(Tp)

至此我们可以枚举T,之后计算后边的和式就好了

其实后边的和式可以预处理得到,我直接算也能过

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 10000005,maxm = 100005,INF = 1000000000;
bitset<maxn> isn;
int prime[maxn],primei,miu[maxn],N;
void init(){
miu[1] = 1;
for (int i = 2; i <= N; i++){
if (!isn[i]) prime[++primei] = i,miu[i] = -1;
for (int j = 1; j <= primei && i * prime[j] <= N; j++){
isn[i * prime[j]] = true;
if (i % prime[j] == 0) {miu[i * prime[j]] = 0;break;}
miu[i * prime[j]] = -miu[i];
}
}
}
int main(){
cin>>N;
init();
LL ans = 0;
for (int i = 1; i <= primei; i++){
for (int j = 1; j <= N / prime[i]; j++)
ans += (LL) miu[j] * (N / prime[i] / j) * (N / prime[i] / j);
}
cout<<ans<<endl;
return 0;
}

BZOJ2818 GCD 【莫比乌斯反演】的更多相关文章

  1. BZOJ2818: Gcd 莫比乌斯反演

    分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include< ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. 【BZOJ2818】Gcd [莫比乌斯反演]

    Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...

  4. HDU1695 GCD(莫比乌斯反演)

    传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...

  5. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  6. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  7. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  8. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  9. BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discu ...

  10. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

随机推荐

  1. spring-运行时值注入

    在项目中经常使用连接数据库的配置,如下所示 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDa ...

  2. python3 练习题100例 (二十九)猴子吃桃问题

    题目内容: 猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后每天早上都吃了前一天剩下的一半零一个.到第n天(<1<n< ...

  3. ESP32 LyraT音频开发板试玩(一):搭建开发环境

    我是卓波,很高兴你来看我的博客. 系列文章: ESP32 LyraT音频开发板试玩(一):搭建开发环境 ESP32 LyraT音频开发板试玩(二):播放音乐 关于ESP32的开发环境搭建,官方有教程, ...

  4. 【转】Python 数据库连接池

    python编程中可以使用pymysql进行数据库连接及增删改查操作,但每次连接mysql请求时,都是独立的去请求访问,比较浪费资源,而且访问数量达到一定数量时,对mysql的性能会产生较大的影响.因 ...

  5. SpringCloud项目,接口调用返回http 500 - Internal Server Error的错误

    今天上班的时候,自己正在参与的Spring Cloud项目出现了问题,原本上周五还正常的项目突然所有接口调用都是返回http 500的错误. 项目的状态是在Eureka上可以看到对应微服务是在线状态, ...

  6. 【多校联合】(HDU6043)KazaQ's Socks

    [多校联合](HDU6043)KazaQ's Socks 一条纯粹的水题,记录下只是因为自己错的太多而已. 原因在于对数据的细节的把握不佳. 原题 KazaQ's Socks Time Limit: ...

  7. Linux-Shell脚本编程-学习-8-函数

    在这章往后的学习中,我讲尽可能详细的讲书中讲到的都记录到这里,以便以后方便查看. 什么是函数,函数就是一段代码,这段代码可以在我们需要的位置调用,那么这段代码就叫做函数. 在Shell中,定义一个函数 ...

  8. 解决Unbuntu终端菱形乱码问题

    原因:安装时为了学习方便选择中文安装,其字符编码相关配置如下(在/etc/default/locale中) LANG="Zh_CN.UTF-8 "LANGUAGE="zh ...

  9. cocos2d-x 中菜单类

    菜单相关类包含:菜单类和菜单项类,菜单类图,从类图可见Menu类继承于Layer. 菜单项类图,从图中可见所有的菜单项都是从BaseMenuItem继承而来的,BaseMenuItem是抽象类,具体使 ...

  10. linux学习总结----对象

    内置对象: Date new Date() --->系统当前时间 var d=new Date() d.getFullYear() getMonth() getDay() getDate() g ...