Building Shops
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 379 Accepted Submission(s): 144
Problem Description
HDU’s n classrooms are on a line ,which can be considered as a number line. Each classroom has a coordinate. Now Little Q wants to build several candy shops in these n classrooms.
The total cost consists of two parts. Building a candy shop at classroom i would have some cost ci. For every classroom P without any candy shop, then the distance between P and the rightmost classroom with a candy shop on P's left side would be included in the cost too. Obviously, if there is a classroom without any candy shop, there must be a candy shop on its left side.
Now Little Q wants to know how to build the candy shops with the minimal cost. Please write a program to help him.
Input
The input contains several test cases, no more than 10 test cases.
In each test case, the first line contains an integer n(1≤n≤3000), denoting the number of the classrooms.
In the following n lines, each line contains two integers xi,ci(−109≤xi,ci≤109), denoting the coordinate of the i-th classroom and the cost of building a candy shop in it.
There are no two classrooms having same coordinate.
Output
For each test case, print a single line containing an integer, denoting the minimal cost.
Sample Input
Sample Output
5
11
// 一条直线上有 n 的教室,想要在这些点上建一些糖果店,建设糖果店的成本分为 2 部分,建设费,右边的非糖果店到这个糖果店的距离差的和(累加到是一个糖果店为止)
//典型DP题
dp[i] 为在 i 建造最后一个糖果店的最小花费的话
丛左到右 dp[i] = min(dp[i],dp[j]+shop[i].v-(n-i+1)*(shop[i].p-shop[j].p)) (1<=j<i) p是位置,v为建造费
还有就是需要排序,还有需要 long long 型
#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
#define LL long long
#define MX 3005
struct Shop
{
LL p,v;
bool operator < (const Shop& b)const
{
return p<b.p;
}
}shop[MX];
LL dp[MX]; int main()
{
int n;
while (scanf("%d",&n)!=EOF)
{
for (int i=;i<=n;i++)
scanf("%I64d%I64d",&shop[i].p,&shop[i].v);
sort(shop+,shop++n);
LL total = ;
for (int i=;i<=n;i++)
total += shop[i].p - shop[].p; dp[]=shop[].v+total;
for (int i=;i<=n;i++)
{
for (int j=;j<i;j++)
{
if (j==) dp[i] = dp[j] + shop[i].v - (n-i+)*(shop[i].p-shop[j].p);
else dp[i] = min(dp[i],dp[j]+shop[i].v-(n-i+)*(shop[i].p-shop[j].p));
}
}
LL ans = dp[];
for (int i=;i<=n;i++)
ans = min(dp[i],ans);
printf("%I64d\n",ans);
}
return ;
}
Building Shops的更多相关文章
- HDU6024 Building Shops 2017-05-07 18:33 30人阅读 评论(0) 收藏
Building Shops Time Limit: 2000/1000 MS ...
- HDU6024:Building Shops(简单DP)
Building Shops Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...
- (hdu 6024) Building Shops
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6024 Problem Description HDU’s n classrooms are on a ...
- hdu6024 Building Shops(区间dp)
https://cn.vjudge.net/problem/HDU-6024 分开考虑某一点种与不种,最后取二者的最小值. dp[i][1] = min(dp[i-1][0], dp[i-1][1]) ...
- HDU 6024 Building Shops
$dp$. $dp[i]$表示到$i$位置,且$i$位置建立了的最小花费,那么$dp[i] = min(dp[k]+cost[i+1][k-1])$,$k$是上一个建的位置.最后枚举$dp[i]$,加 ...
- 【HDU6024】Building Shops
题意 有n个教室排成一排,每个教室都有一个坐标,现在,小Q想建一些糖果商店,在这n个教室里面.总的花费有两部分,在教室i建一个糖果屋需要花费ci,对于没有任何糖果屋的P,需要的花费为这个教室到它左边有 ...
- HDU6024:Building Shops(DP)
传送门 题意 在一条直线上有n个教室,现在要设置糖果店,使得最后成本最小,满足以下两个条件: 1.若该点为糖果店,费用为cost[i]; 2.若不是,则为loc[i]-最近的糖果店的loc 分析 dp ...
- HDU 6024 Building Shops (简单dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6024 题意:有n个room在一条直线上,需要这这些room里面建造商店,如果第i个room建造,则要总 ...
- 2017中国大学生程序设计竞赛 - 女生专场 1002 dp
Building Shops Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...
随机推荐
- ssl生成证书
凝雨 - Yun 快乐编程每一天 - Happy Coding Every Days HOME ARCHIVES CATEGORIES TAGS ABOUT Openssl生成自签名证书,简单步骤 P ...
- Uni2D 入门
原地址:http://blog.csdn.net/kakashi8841/article/details/17599505
- linux/unix核心设计思想
1) 程序应该小而专一,程序应该尽量的小,且仅仅专注于一件事上.不要开发那些看起来实用可是90%的情况都用不到的特性: 2) 程序不仅仅要考虑性能, 程序的可移植性更重要,shell和perl.pyt ...
- hdu1010 dfs+路径剪枝
题意:用一个案例来解释 4 4 5 S.X. ..X. ..XD .... 在这个案例中,是一个4*4的地图. . 表示可走的地方, X 表示不可走的地方,S表示起始点,D表示目标点.没走到一个点之后 ...
- Android自定义Toast
1.http://www.cnblogs.com/salam/archive/2010/11/10/1873654.html 2.
- Python进行数值计算
1.计算积分 (1)计算定积分 from scipy import integrate #定义函数def half_circle(x): return (1-x**2)**0.5 pi_half, e ...
- Python3 range()函数
Python3 range() 函数用法 Python3 内置函数 Python3 range() 函数返回的是一个可迭代对象(类型是对象),而不是列表类型, 所以打印的时候不会打印列表. Pyth ...
- 系统管理员应该知道的 20 条 Linux 命令
如果您的应用程序不工作,或者您希望在寻找更多信息,这 20 个命令将派上用场. 在这个全新的工具和多样化的开发环境井喷的大环境下,任何开发者和工程师都有必要学习一些基本的系统管理命令.特定的命令和工具 ...
- Html添加百度地图
方法/步骤 1.打开“百度地图生成器”的网址:http://api.map.baidu.com/lbsapi/creatmap/index.html 如下图: 2.在“1.定位中心点”中,切换城市,并 ...
- 树莓派学习笔记——apt方式安装opencv
0.前言 本文介绍怎样在树莓派中通过apt方式安装opencv.并通过一个简单的样例说明怎样使用opencv. 相比于源码方式安装opencv,通过apt方式安装过程步骤简单些,消耗的时间也少 ...