【莫比乌斯反演】BZOJ2920-YY的GCD
【题目大意】
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对。
【思路】
太神了这道题……蒟蒻只能放放题解:戳,明早再过来看看还会不会推导过程……
实用的结论:
嗯……
/**************************************************************
Problem: 2820
Language: C++
Result: Accepted
Time:4164 ms
Memory:196600 kb
****************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=0x7fffffff;
const int MAXN=+;
typedef long long ll;
int miu[MAXN],g[MAXN],prime[MAXN],pnum=;
ll sum[MAXN];
int N,M; void get_miu(int maxn)
{
miu[]=;
g[]=;
sum[]=sum[]=;
for (int i=;i<maxn;i++) miu[i]=-INF;
for (int i=;i<maxn;i++)
{
if (miu[i]==-INF)
{
miu[i]=-;
prime[++pnum]=i;
g[i]=;
}
for (int j=;j<=pnum;j++)
{
if (i*prime[j]>=maxn) break;
if (i%prime[j]==)
{
miu[i*prime[j]]=;
g[i*prime[j]]=miu[i];
}
else
{
miu[i*prime[j]]=-miu[i];
g[i*prime[j]]=miu[i]-g[i];
}
}
sum[i]=sum[i-]+g[i];
}
} void get_ans()
{
ll ans=;
scanf("%d%d",&N,&M);
if (N>M) swap(N,M);
int pos;
for (int t=;t<=N;t=pos+)
{
pos=min(N/(N/t),M/(M/t));
ans+=(ll)(sum[pos]-sum[t-])*(N/t)*(M/t);
}
printf("%lld\n",ans);
} int main()
{
get_miu(MAXN);
int T;
scanf("%d",&T);
while (T--) get_ans();
return ;
}
【莫比乌斯反演】BZOJ2920-YY的GCD的更多相关文章
- P2257 YY的GCD(莫比乌斯反演)
第一次做莫比乌斯反演,推式子真是快乐的很啊(棒读) 前置 若函数\(F(n)\)和\(f(d)\)存在以下关系 \[ F(n)=\sum_{n|d}f(d) \] 则可以推出 \[ f(n)=\sum ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)
4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...
- P2257 YY的GCD (莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P2257 // luogu-judger-enable-o2 /* -------------------- ...
随机推荐
- BZOJ1051:受欢迎的牛(并查集 / Tarjan)
1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 8161 Solved: 4460 Description ...
- function(data)
转:http://blog.csdn.net/lixld/article/details/12206367 之前用了$.post()已经很久了,可是从来没有好好研究过这里的data对象,今天好好总结下 ...
- Java中Class<T>与Class<?>的区别
E - Element (在集合中使用,因为集合中存放的是元素) T - Type(Java 类) K - Key(键) V - Value(值) N - Number(数值类型) ? - 表示不确定 ...
- JAVA多线程---好的博客资源收集
个人笔记,备忘 1.http://blog.csdn.net/column/details/concurrency.html 兰亭风雨的专栏 2.http://lavasoft.blog.51c ...
- Linux 安装编译 FFMPEG
资源准备: ffmpeg-3.4.tar.bz2 yasm-1.3.0.tar.gz 编译安装: 本人二进制包存放在 /opt/moudles中, 解压缩在 /opt/softwares 解包 ffm ...
- bzoj4759 [Usaco2017 Jan]Balanced Photo
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4759 [题解] 排序,从大到小插入,树状数组统计. # include <vector ...
- swift xcode设置 ,代码折叠,全局折叠 快捷键
在preference text editing 里面打开 function 折叠的项, 折叠方法快捷键: option+command +left/right 全局折叠快捷键: shift+opti ...
- spoj p104 Matrix-Tree定理
这个问题就是经典的生成树记数问题,题目为spoj p104 highway. 首先我们引入Matrix-Tree定理,由kirchhoff证明,定理的概述为,对于图G,我们定义若干个矩阵, D[G], ...
- Nexus 5 Change FireFox OS to android
1.Enter Fastboot mode,flash recovery: D:\BaiduYunDownload\recovery>fastboot flash recovery 6.0.4. ...
- [Leetcode Week8]Subsets II
Subsets II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/subsets-ii/description/ Description Given ...