关于tarjan,在下觉得这个算法从本质上是一种暴力求强连通分量的方法,但事实上这也是最有效的求强连通分量的方法之一,它对于处理各种强连通分量中奇怪问题,都可以直接转化,所以比较通用和常见。

  什么是tarjan

  粗略的描述一下(详细描述在百度里很详细)

  首先每个点都有时间戳和最小子树戳。

  时间戳的定义是这个点进行递归的时间,每新递归一次就增加,所以每个点的时间戳都不一样,最小子树戳的定义是当前点的子树上节点中(包括它自己)时间戳的最小值。

  它的基本方法是先把任意一个没有tarjan过的点加入栈,然后把新加入的点当做一棵树的根做处理,先把自己的时间戳和最小子树戳设为自己,然后每次去找根的所链的每条边,如果当前边所接的目标节点没有进行过tarjan,那就再tarjan递归处理,处理后,对比当前点最小子树戳和所搜目标节点的最小子树戳,取最小值;如果已经进行过tarjan,但是当前所搜到的目标节点不在栈里(也就是非当前点的来源节点),那么就什么也不做(因为只要这点进过tarjan就说明一定已经把它所处的强连通分量找过,并且找全,但你当前所处理的点是没进过tarjan的,所以一定不和这种进过栈但当前不在栈的点属于一个强连通分量);最后一种情况进行过tarjan并且当前点再栈里,那么我们只需要对比当前点的最小子树戳和目标节点的时间戳,取最小值。

  如果搜索子树的工作结束了,那么要判断是否当前递归节点的时间戳和最小子树戳相同:如果相同,那么从这个节点一直到栈顶都属于同一个强连通分量,全部弹出;如果不同,结束当前递归。

先贴出tarjan的模板

 void tarjan(int sb)
{
low[sb]=time[sb]=++T;
f[sb]=true;
stack[++ass]=sb;
for(int k=head[sb];k!=;k=e[k].next)
{
if(!time[e[k].aim])
{
tarjan(e[k].aim);
low[sb]=min(low[sb],low[e[k].aim]);
}
else if(f[e[k].aim])low[sb]=min(low[sb],time[e[k].aim]);
}
if(time[sb]==low[sb])
{
f[sb]=false;
while(stack[ass]!=sb)
f[stack[ass--]]=false;
ass--;
}
}

在此提供一道tarjan裸题

  codevs1332

  在幻想乡,上白泽慧音是以知识渊博闻名的老师。春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄。因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点。人间之里由N个村庄(编号为1..N)和M条道路组成,道路分为两种一种为单向通行的,一种为双向通行的,分别用1和2来标记。如果存在由村庄A到达村庄B的通路,那么我们认为可以从村庄A到达村庄B,记为(A,B)。当(A,B)和(B,A)同时满足时,我们认为A,B是绝对连通的,记为<A,B>。绝对连通区域是指一个村庄的集合,在这个集合中任意两个村庄X,Y都满足<X,Y>。现在你的任务是,找出最大的绝对连通区域,并将这个绝对连通区域的村庄按编号依次输出。若存在两个最大的,输出字典序最小的,比如当存在1,3,4和2,5,6这两个最大连通区域时,输出的是1,3,4。

输入描述 Input Description

第1行:两个正整数N,M

第2..M+1行:每行三个正整数a,b,t, t = 1表示存在从村庄a到b的单向道路,t = 2表示村庄a,b之间存在双向通行的道路。保证每条道路只出现一次。

输出描述 Output Description

第1行: 1个整数,表示最大的绝对连通区域包含的村庄个数。

第2行:若干个整数,依次输出最大的绝对连通区域所包含的村庄编号。

下面贴出手写代码

 #include<cstdio>
struct shit{
int aim;
int next;
bool use;
}e[];
int max(int x,int y)
{
return x>y?x:y;
}
int min(int x,int y)
{
return x<y?x:y;
}
int point,head[],n,m,ass,cnt,stack[],low[],time[],ans[],a,b,num,T,cl2[],cl[];
bool f[];
void fuck(int x,int y)
{
e[++point].aim=y;
e[point].next=head[x];
head[x]=point;
}
void tarjan(int sb)
{
int x=ass;
stack[++ass]=sb;
f[sb]=true;
low[sb]=time[sb]=++T;
for(int k=head[sb];k!=;k=e[k].next)
{
int c=e[k].aim;
if(!time[c])
{
tarjan(c);
low[sb]=min(low[sb],low[c]);
}
else if(f[c])low[sb]=min(low[sb],time[c]);
}
if(low[sb]==time[sb])
{
cnt++;
if(ass-x>=cl[])
{
cl[]=ass-x;
cl[]=cnt;
}
for(int i=;i<=ass-x;i++)
{
cl2[stack[x+i]]=cnt;
f[stack[x+i]]=false;
}
ass=x;
}
return;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&num);
if(num-)fuck(b,a);
fuck(a,b);
}
for(int i=;i<=n;i++)
if(!time[i])tarjan(i);
printf("%d\n",cl[]);
point=;
for(int i=;i<=n;i++)
{
if(cl2[i]==cl[])ans[++point]=i;
}
for(int i=;i<=cl[];i++)
{
printf("%d ",ans[i]);
}
return ;
}

 

图论算法》关于tarjan算法两三事的更多相关文章

  1. 【算法•日更•第二十八期】图论:强连通+Tarjan算法(一)

    ▎前言 一直都想学习这个东西,以为很难,结果发现也不过如此. 只要会些图论的基础就可以了. ▎强连通 ☞『定义』 既然叫强连通,那么一定具有很强的连通性. 强连通:就是指在一个有向图中,两个顶点可以互 ...

  2. 图论-强连通分量-Tarjan算法

    有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在 ...

  3. 【算法】Tarjan算法求强连通分量

    概念: 在有向图G中,如果两个定点u可以到达v,并且v也可以到达u,那么我们称这两个定点强连通. 如果有向图G的任意两个顶点都是强连通的,那么我们称G是一个强连通图. 一个有向图中的最大强连通子图,称 ...

  4. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  5. tarjan 算法讲解(转)

     转自:https://www.byvoid.com/blog/scc-tarjan/ 網誌 列表 標籤 項目 關於 聯繫 四月142009 作者:byvoid 閱讀: 158882 計算機科學 圖論 ...

  6. Tarjan算法初探 (1):Tarjan如何求有向图的强连通分量

    在此大概讲一下初学Tarjan算法的领悟( QwQ) Tarjan算法 是图论的非常经典的算法 可以用来寻找有向图中的强连通分量 与此同时也可以通过寻找图中的强连通分量来进行缩点 首先给出强连通分量的 ...

  7. 【转载】有向图强连通分量的Tarjan算法

    转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly conn ...

  8. 有向图强连通分量的Tarjan算法(转)

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  9. 【转】BYV--有向图强连通分量的Tarjan算法

    转自beyond the void 的博客: https://www.byvoid.com/zhs/blog/scc-tarjan 注:红色为标注部分 [有向图强连通分量] 在有向图G中,如果两个顶点 ...

  10. 图之强连通--Tarjan算法

    强连通分量 简介 在阅读下列内容之前,请务必了解图论基础部分. 强连通的定义是:有向图 G 强连通是指,G 中任意两个结点连通. 强连通分量(Strongly Connected Components ...

随机推荐

  1. [C#] Newtonsoft.Json 版本冲突

    在web.config或者app.config里面加上一段: <runtime> <assemblyBinding xmlns="urn:schemas-microsoft ...

  2. MbrFix 问题

    删除Windows/Linux双系统下的Linux系统 参考博客 注意:官网上的 MbrFix.exe 下载或许太慢. CSDN下载 问题 1.看到博客下面的评论写道: 为什么我的到第四步的时候会提示 ...

  3. DNS域名解析负载均衡

  4. Java中数据库连接池原理机制的详细讲解(转)

    连接池的基本工作原理 1.基本概念及原理 由上面的分析可以看出,问题的根源就在于对数据库连接资源的低效管理.我们知道,对于共享资源,有一个很著名的设计模式:资源池 (Resource Pool).该模 ...

  5. Mac 及 Xcode快捷键

    mac快捷键: 窗口最大化:control+command+F 窗口最小化:command+M 关闭当前:    command+W 退出程序:    command+Q Safari往下翻页:空格 ...

  6. 关于JS浅拷贝和深拷贝

    在 JS 中有一些基本类型像是Number.String.Boolean,而对象就是像这样的东西{ name: 'Larry', skill: 'Node.js' },对象跟基本类型最大的不同就在于他 ...

  7. 【spring源码学习】spring的IOC容器之BeanFactoryPostProcessor接口学习

    [一]org.springframework.beans.factory.config.BeanFactoryPostProcessor接口==>该接口实现方法的执行时机:该接口void pos ...

  8. 1.1对java web开发的一点理解

    前言 Q:通常行内人士见面会问你,你做哪方面开发的? A:java web开发的 那么,什么是java web开发? java web开发通常是指java web应用程序的开发.一个B/S架构的 we ...

  9. IDEA生成serialVersionUID的警告

    默认情况下Intellij IDEA是关闭了继承了java.io.Serializable的类生成serialVersionUID的警告.如果需要ide提示生成serialVersionUID,那么需 ...

  10. COGS 2259 异化多肽——生成函数+多项式求逆

    题目:http://cogs.pro:8080/cogs/problem/problem.php?pid=2259 详见:https://www.cnblogs.com/Zinn/p/10054569 ...