---恢复内容开始---

一、结巴中文分词涉及到的算法包括:

(1) 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG);

(2) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合;

(3) 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法。

结巴中文分词支持的三种分词模式包括:

(1) 精确模式:试图将句子最精确地切开,适合文本分析;

(2) 全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义问题;

(3) 搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

同时结巴分词支持繁体分词和自定义字典方法。

二、首先要先在cmd下载结巴

可以通过pip指令安装:pip install jieba   #或者 pip3 install jieba

然后通过pip show pip检查是否是下载成功

这个就是jieba安装成功了

三、

#encoding=utf-8
importjieba
#全模式
text ="我来到北京清华大学"
seg_list = jieba.cut(text, cut_all=True)
printu"[全模式]: ","/ ".join(seg_list)
#精确模式
seg_list = jieba.cut(text, cut_all=False)
printu"[精确模式]: ","/ ".join(seg_list)
#默认是精确模式
seg_list = jieba.cut(text)
printu"[默认模式]: ","/ ".join(seg_list)
#新词识别 “杭研”并没有在词典中,但是也被Viterbi算法识别出来了
seg_list = jieba.cut("他来到了网易杭研大厦")
printu"[新词识别]: ","/ ".join(seg_list)
#搜索引擎模式
seg_list = jieba.cut_for_search(text)
printu"[搜索引擎模式]: ","/ ".join(seg_list)

输出如图所示:

代码中函数简单介绍如下:

jieba.cut():第一个参数为需要分词的字符串,第二个cut_all控制是否为全模式。

jieba.cut_for_search():仅一个参数,为分词的字符串,该方法适合用于搜索引擎构造倒排索引的分词,粒度比较细。

其中待分词的字符串支持gbk\utf-8\unicode格式。返回的结果是一个可迭代的generator,可使用for循环来获取分词后的每个词语,更推荐使用转换为list列表。

2.添加自定义词典

由于"国家5A级景区"存在很多旅游相关的专有名词,举个例子:

[输入文本] 故宫的著名景点包括乾清宫、太和殿和黄琉璃瓦等

[精确模式] 故宫/的/著名景点/包括/乾/清宫/、/太和殿/和/黄/琉璃瓦/等

[全 模 式] 故宫/的/著名/著名景点/景点/包括/乾/清宫/太和/太和殿/和/黄/琉璃/琉璃瓦/等

显然,专有名词"乾清宫"、"太和殿"、"黄琉璃瓦"(假设为一个文物)可能因分词而分开,这也是很多分词工具的又一个缺陷。但是Jieba分词支持开发者使用自定定义的词典,以便包含jieba词库里没有的词语。虽然结巴有新词识别能力,但自行添加新词可以保证更高的正确率,尤其是专有名词。

词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略,ns为地点名词),用空格隔开。

#encoding=utf-8
importjieba
#导入自定义词典
jieba.load_userdict("dict.txt")
#全模式
text ="故宫的著名景点包括乾清宫、太和殿和黄琉璃瓦等"
seg_list = jieba.cut(text, cut_all=True)
printu"[全模式]: ","/ ".join(seg_list)
#精确模式
seg_list = jieba.cut(text, cut_all=False)
printu"[精确模式]: ","/ ".join(seg_list)
#搜索引擎模式
seg_list = jieba.cut_for_search(text)
printu"[搜索引擎模式]: ","/ ".join(seg_list)

  输出结果如下所示:其中专有名词连在一起,即"乾清宫"和"黄琉璃瓦"。

---恢复内容结束---

jieba和文本词频统计的更多相关文章

  1. jieba (中文词频统计) 、collections (字频统计)、WordCloud (词云)

    py库: jieba (中文词频统计) .collections (字频统计).WordCloud (词云) 先来个最简单的: # 查找列表中出现次数最多的值 ls = [1, 2, 3, 4, 5, ...

  2. Python之利用jieba库做词频统计且制作词云图

    一.环境以及注意事项 1.windows10家庭版 python 3.7.1 2.需要使用到的库 wordcloud(词云),jieba(中文分词库),安装过程不展示 3.注意事项:由于wordclo ...

  3. py库: jieba (中文词频统计) 、collections (字频统计)、WordCloud (词云)

    先来个最简单的: # 查找列表中出现次数最多的值 ls = [1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 1] ls = ["呵呵", "呵呵&qu ...

  4. jieba库分词词频统计

    代码已发至github上的python文件 词频统计结果如下(词频为1的词组数量已省略): {'是': 5, '风格': 4, '擅长': 4, '的': 4, '兴趣': 4, '宣言': 4, ' ...

  5. Python3.7 练习题(二) 使用Python进行文本词频统计

    # 使用Python进行词频统计 mytext = """Background Industrial Light & Magic (ILM) was starte ...

  6. jieba库及词频统计

    import jieba txt = open("C:\\Users\\Administrator\\Desktop\\流浪地球.txt", "r", enco ...

  7. jieba分词及词频统计小项目

    import pandas as pd import jieba import jieba.analyse from collections import Counter,OrderedDict ji ...

  8. 用jieba库统计文本词频及云词图的生成

    一.安装jieba库 :\>pip install jieba #或者 pip3 install jieba 二.jieba库解析 jieba库主要提供提供分词功能,可以辅助自定义分词词典. j ...

  9. jieba库的使用与词频统计

    1.词频统计 (1)词频分析是对文章中重要词汇出现的次数进行统计与分析,是文本 挖掘的重要手段.它是文献计量学中传统的和具有代表性的一种内容分析方法,基本原理是通过词出现频次多少的变化,来确定热点及其 ...

随机推荐

  1. 谈谈Spring 注入properties文件总结

    本篇谈谈Spring 注入properties文件总结,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随小编过来看看吧 spring提供了多种方式来注入properties文件,本文做一个 ...

  2. 【转】Eclipse中10个最有用的快捷键组合

    转载地址:http://blog.csdn.net/seebetpro/article/details/46227005 一个Eclipse骨灰级开发者总结了他认为最有用但又不太为人所知的快捷键组合. ...

  3. HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)

    题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...

  4. 设计模式19:Chain Of Responsibility 职责链模式(行为型模式)

    Chain Of Responsibility 职责链模式(行为型模式) 请求的发送者与接受者 某些对象请求的接受者可能有多种多样,变化无常…… 动机(Motivation) 在软件构建过程中,一个请 ...

  5. Java中一对多映射关系

    通过栗子,一个人可以有多辆汽车 定义人   这个类 人可以有很多辆汽车,类中车属性用数组 class Person{ private String name; private String phone ...

  6. 深入理解java虚拟机(二)HotSpot Java对象创建,内存布局以及访问方式

    内存中对象的创建.对象的结构以及访问方式. 一.对象的创建 在语言层面上,对象的创建只不过是一个new关键字而已,那么在虚拟机中又是一个怎样的过程呢? (一)判断类是否加载.虚拟机遇到一条new指令的 ...

  7. 学习python5面向

    类有一个名为 __init__() 的特殊方法(构造方法),该方法在类实例化时会自动调用 面向过程:根据业务逻辑从上到下写代码 面向对象:将数据与函数绑定到一起,进行封装,这样能够更快速的开发程序,减 ...

  8. Spring Cache介绍和使用

    Spring Cache 缓存是实际工作中非经常常使用的一种提高性能的方法, 我们会在很多场景下来使用缓存. 本文通过一个简单的样例进行展开,通过对照我们原来的自己定义缓存和 spring 的基于凝视 ...

  9. linux查看日志文件内容命令tail、cat、tac、head、echo详解

    linux查看日志文件内容命令tail.cat.tac.head.echo tail -f test.log你会看到屏幕不断有内容被打印出来. 这时候中断第一个进程Ctrl-C, ---------- ...

  10. 买了个vultr的vps,准备把博客转过去,顺便记录一点操作。

    1.shadow影子socks梯子已经搭好了,步骤: apt-get install python-pip pip install shadowsocks 任意目录创建配置文件json(ss可以在很多 ...