softmax,softmax loss和cross entropy的讲解
1 softmax
我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等。这一篇主要介绍全连接层和损失层的内容,算是网络里面比较基础的一块内容。先理清下从全连接层到损失层之间的计算。来看下面这张图。
这张图的等号左边部分就是全连接层做的事,W是全连接层的参数,我们也称为权值,X是全连接层的输入,也就是特征。从图上可以看出特征X是N*1的向量,这是怎么得到的呢?这个特征就是由全连接层前面多个卷积层和池化层处理后得到的,假设全连接层前面连接的是一个卷积层,这个卷积层的输出是100个特征(也就是我们常说的feature map的channel为100),每个特征的大小是4*4,那么在将这些特征输入给全连接层之前会将这些特征flat成N*1的向量(这个时候N就是100*4*4=1600)。解释完X,再来看W,W是全连接层的参数,是个T*N的矩阵,这个N和X的N对应,T表示类别数,比如你是7分类,那么T就是7。我们所说的训练一个网络,对于全连接层而言就是寻找最合适的W矩阵。因此全连接层就是执行WX得到一个T*1的向量(也就是图中的logits[T*1]),这个向量里面的每个数都没有大小限制的,也就是从负无穷大到正无穷大。然后如果你是多分类问题,一般会在全连接层后面接一个softmax层,这个softmax的输入是T*1的向量,输出也是T*1的向量(也就是图中的prob[T*1],这个向量的每个值表示这个样本属于每个类的概率),只不过输出的向量的每个值的大小范围为0到1。现在你知道softmax的输出向量是什么意思了,就是概率,该样本属于各个类的概率!
那么softmax执行了什么操作可以得到0到1的概率呢?先来看看softmax的公式:
公式非常简单,前面说过softmax的输入是WX,假设模型的输入样本是I,讨论一个3分类问题(类别用1,2,3表示),样本I的真实类别是2,那么这个样本I经过网络所有层到达softmax层之前就得到了WX,也就是说WX是一个3*1的向量,那么上面公式中的aj就表示这个3*1的向量中的第j个值(最后会得到S1,S2,S3);而分母中的ak则表示3*1的向量中的3个值,所以会有个求和符号(这里求和是k从1到T,T和上面图中的T是对应相等的,也就是类别数的意思,j的范围也是1到T)。因为e^x恒大于0,所以分子永远是正数,分母又是多个正数的和,所以分母也肯定是正数,因此Sj是正数,而且范围是(0,1)。如果现在不是在训练模型,而是在测试模型,那么当一个样本经过softmax层并输出一个T*1的向量时,就会取这个向量中值最大的那个数的index作为这个样本的预测标签。因此我们训练全连接层的W的目标就是使得其输出的WX在经过softmax层计算后其对应于真实标签的预测概率要最高。
举个例子:假设你的WX=[1,2,3],那么经过softmax层后就会得到[0.09,0.24,0.67],这三个数字表示这个样本属于第1,2,3类的概率分别是0.09,0.24,0.67。
2 softmax loss
弄懂了softmax,就要来说说softmax loss了。 那softmax loss是什么意思呢?如下:
首先L是损失。Sj是softmax的输出向量S的第j个值,前面已经介绍过了,表示的是这个样本属于第j个类别的概率。yj前面有个求和符号,j的范围也是1到类别数T,因此y是一个1*T的向量,里面的T个值,而且只有1个值是1,其他T-1个值都是0。那么哪个位置的值是1呢?答案是真实标签对应的位置的那个值是1,其他都是0。所以这个公式其实有一个更简单的形式:
注:当然此时要限定j是指向当前样本的真实标签。
来举个例子吧。假设一个5分类问题,然后一个样本I的标签y=[0,0,0,1,0],也就是说样本I的真实标签是4,假设模型预测的结果概率(softmax的输出)p=[0.1,0.15,0.05,0.6,0.1],可以看出这个预测是对的,那么对应的损失L=-log(0.6),也就是当这个样本经过这样的网络参数产生这样的预测p时,它的损失是-log(0.6)。那么假设p=[0.15,0.2,0.4,0.1,0.15],这个预测结果就很离谱了,因为真实标签是4,而你觉得这个样本是4的概率只有0.1(远不如其他概率高,如果是在测试阶段,那么模型就会预测该样本属于类别3),对应损失L=-log(0.1)。那么假设p=[0.05,0.15,0.4,0.3,0.1],这个预测结果虽然也错了,但是没有前面那个那么离谱,对应的损失L=-log(0.3)。我们知道log函数在输入小于1的时候是个负数,而且log函数是递增函数,所以-log(0.6) < -log(0.3) < -log(0.1)。简单讲就是你预测错比预测对的损失要大,预测错得离谱比预测错得轻微的损失要大。
3 corss entropy
理清了softmax loss,就可以来看看cross entropy了。 corss entropy是交叉熵的意思,它的公式如下:
是不是觉得和softmax loss的公式很像。当cross entropy的输入P是softmax的输出时,cross entropy等于softmax loss。Pj是输入的概率向量P的第j个值,所以如果你的概率是通过softmax公式得到的,那么cross entropy就是softmax loss。
转:极市平台
softmax,softmax loss和cross entropy的讲解的更多相关文章
- 卷积神经网络系列之softmax,softmax loss和cross entropy的讲解
我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等.虽然现在已经开源了很多深度学习框架(比如MxNet,Caf ...
- softmax,softmax loss和cross entropy的区别
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014380165/article/details/77284921 我们知道卷积神经网络(CNN ...
- softmax、cross entropy和softmax loss学习笔记
之前做手写数字识别时,接触到softmax网络,知道其是全连接层,但没有搞清楚它的实现方式,今天学习Alexnet网络,又接触到了softmax,果断仔细研究研究,有了softmax,损失函数自然不可 ...
- 关于交叉熵损失函数Cross Entropy Loss
1.说在前面 最近在学习object detection的论文,又遇到交叉熵.高斯混合模型等之类的知识,发现自己没有搞明白这些概念,也从来没有认真总结归纳过,所以觉得自己应该沉下心,对以前的知识做一个 ...
- 一篇博客:分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error
https://zhuanlan.zhihu.com/p/26268559 分类问题的目标变量是离散的,而回归是连续的数值. 分类问题,都用 onehot + cross entropy traini ...
- 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...
- 关于交叉熵(cross entropy),你了解哪些
二分~多分~Softmax~理预 一.简介 在二分类问题中,你可以根据神经网络节点的输出,通过一个激活函数如Sigmoid,将其转换为属于某一类的概率,为了给出具体的分类结果,你可以取0.5作为阈值, ...
- 【转】TensorFlow四种Cross Entropy算法实现和应用
http://www.jianshu.com/p/75f7e60dae95 作者:陈迪豪 来源:CSDNhttp://dataunion.org/26447.html 交叉熵介绍 交叉熵(Cross ...
- cross entropy与logistic regression
维基上corss entropy的一部分 知乎上也有一个类似问题:https://www.zhihu.com/question/36307214 cross entropy有二分类和多分类的形式,分别 ...
随机推荐
- UGUI 自动布局的重叠BUG
1,父级使用了verticalLayout(注意没有ContentSizeFilter),子级使用了ContentSizeFilter时,点击Apply常常发现,本来布局好的UI突然重叠到了一起,或位 ...
- 前端开发之JavaScript基础篇四
主要内容: 1.定时器 2.正则表达式入门 3.元字符 4.正则表达式实战运用 一.定时器 javaScript里主要使用两种定时器,分别是:setInterval()和setTimeout(). 1 ...
- AssetBundle依赖
[Managing asset dependencies] 一个Asset会依赖其它Asset.可以把一个Asset所依赖的Asset也打包进自己的AssetBundle.可是多个Asset可能依赖同 ...
- 第二个MFC实例:GPA计算器
一.目的:此文通过一个GPA计算器的制作,介绍基于对话框的应用程序的编程方法.常用控件的编程技巧以及控件外观的更改技巧. 二.功能描述:所谓GPA计算器,即进行GPA换算. 功能要求由如下几点: 1. ...
- java实现文件的拷贝以及文件的删除
/** * 将文件拷贝到指定目录 * @param oldAddress 文件所在目录(文件的全路径) * @param newAddress 指定目录(包含复制文件的全名称) * @throws E ...
- Struts2概述
-------------------siwuxie095 Struts2 概述 1.Struts2 是应用在 Java EE 三层架构中的 Web 层的框架 2.Struts2 是在 Struts1 ...
- 解题报告Best Time to Buy and Sell Stock with Cooldown
题目 Say you have an array for which the ith element is the price of a given stock on day i. Design an ...
- Runnable和Thread实现多线程的区别(含代码)
转载请注明出处:http://blog.csdn.net/ns_code/article/details/17161237 Java中实现多线程有两种方法:继承Thread类.实现Runnable接口 ...
- Python学习笔记_读Excel去重
读取一个Excel文件,按照某列关键字,如果有重复则去掉 这里不介绍所有的解决办法,只是列出一个办法. 软件环境: OS:Win10 64位 Python 3.7 测试路径:D:\Work\Pytho ...
- [C++] Function Template - optional parameter
Function Template