LINK

题意:简单粗暴,求菲波那契数列每个数的m次的前n项和模1e9+7

思路:斐波那契通项式, 注意到有很多根号5,求二次剩余为5模1e9+7的解,显然我们可以直接找一个(383008016),然后拿来替代根号5,然后优化下,把中括号中共轭的两部分预处理下,然后由于是外部的一个指数m,从1枚举到m,来求二项式定理的每项系数,再用个逆元就好了。人家的校赛题(

/** @Date    : 2017-03-18-15.39
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include<bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const LL mod = 1e9 + 9;
const LL trem = 383008016;
LL fac[N], le[N], ri[N]; LL fpow(LL a, LL n)
{
LL res = 1;
while(n > 0)
{
if(n & 1)
res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
} LL Inv(LL x)
{
return fpow(x, mod - 2);
} void init()
{
LL tinv = Inv(2); fac[0] = 1;
le[0] = ri[0] = 1;
LL l = ((1 + trem + mod)%mod) * tinv % mod;
LL r = ((1 - trem + mod)%mod) * tinv % mod;
for(LL i = 1; i < N; i++)
fac[i] = fac[i - 1] * i % mod;
for(int i = 1; i < N; i++)
{
le[i] = le[i - 1] * l % mod;
ri[i] = ri[i - 1] * r % mod;
//cout << le[i] <<" " << ri[i] << endl;
}
}
int T;
LL n, k;
int main()
{
init();
cin >> T;
while(T--)
{
scanf("%lld%lld", &n, &k);
LL ans = 0;
for(int i = 0; i <= k; i++)
{
LL flag = 1;
if((k - i) % 2)
flag = -1;
LL t = le[i] * ri[k - i] % mod;
LL d = fac[k - i] * fac[i] % mod;
LL c = fac[k] * Inv(d) % mod;
LL x = (t * (1 - fpow(t, n)) % mod) * Inv(1 - t) % mod;
if(t == 1)
x = n % mod;
ans = (ans + flag * c * x ) % mod;
ans = (ans + mod) % mod;
//cout << t << endl;
}
ans = (ans * fpow(Inv(trem) % mod, k) + mod) % mod;
printf("%lld\n", ans);
}
return 0;
}

ZOJ 3774 二次剩余的更多相关文章

  1. [zoj 3774]Power of Fibonacci 数论(二次剩余 拓展欧几里得 等比数列求和)

    Power of Fibonacci Time Limit: 5 Seconds      Memory Limit: 65536 KB In mathematics, Fibonacci numbe ...

  2. ZOJ 3774 Fibonacci的K次方和

    In mathematics, Fibonacci numbers or Fibonacci series or Fibonacci sequence are the numbers of the f ...

  3. Fibonacci数列的幂和 zoj 3774

    题目大意: 求斐波那契数列前n项的k次幂和  Mod 1000000009.    n<=1e18, k<=1e5 这题的k比较大,所以不能用矩阵乘法来递推.学到了新姿势...  http ...

  4. [hdu 4959]Poor Akagi 数论(卢卡斯数,二次域运算,等比数列求和)

    Poor Akagi Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  5. 2014 Super Training #7 F Power of Fibonacci --数学+逆元+快速幂

    原题:ZOJ 3774  http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3774 --------------------- ...

  6. ZOJ People Counting

    第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ  3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...

  7. ZOJ 3686 A Simple Tree Problem

    A Simple Tree Problem Time Limit: 3 Seconds      Memory Limit: 65536 KB Given a rooted tree, each no ...

  8. ZOJ Problem Set - 1394 Polar Explorer

    这道题目还是简单的,但是自己WA了好几次,总结下: 1.对输入的总结,加上上次ZOJ Problem Set - 1334 Basically Speaking ac代码及总结这道题目的总结 题目要求 ...

  9. ZOJ Problem Set - 1392 The Hardest Problem Ever

    放了一个长长的暑假,可能是这辈子最后一个这么长的暑假了吧,呵呵...今天来实验室了,先找了zoj上面简单的题目练练手直接贴代码了,不解释,就是一道简单的密文转换问题: #include <std ...

随机推荐

  1. 缓存-MemoryCache Class

    这是使用MemoryCache缓存的一个例子. private void btnGet_Click(object sender, EventArgs e) { ObjectCache cache = ...

  2. Java & hashCode作用

    首先,想要明白hashCode的作用,你必须要先知道Java中的集合. 总的来说,Java中的集合(Collection)有两类,一类是List,再有一类是Set.你知道它们的区别吗?前者集合内的元素 ...

  3. 3dContactPointAnnotationTool开发日志(三四)

      今天就是让背景图可以变大变小,变透明度,然后将3d的点投影到图片上,输出2d接触点信息:   可以看到输出了正确的接触点信息:   然后还把空物体的包围盒大小设置为边长为0.1的的正方体,点击选中 ...

  4. linux mysql表名大小写

    1.用ROOT登录,修改/etc/my.cnf 2.在[mysqld]下加入一行:lower_case_table_names=1 0:区分大小写,1:不区分大小写 3.重新启动数据库即可

  5. 小工具xml生成记录

    public partial class Form1 : Form    {        public Form1()        {            InitializeComponent ...

  6. 【前端学习笔记01】JavaScript源生判断数据类型的方法

    原始类型(值类型):Undefined.Null.Number.String.Boolean: 对象类型(引用类型):Object: typeof  可以识别标准类型,null外(返回Object): ...

  7. 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp

    题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...

  8. wp如何代码重启手机

    用过windows phone手机操作系统的人都知道,wp的系统设置界面很长一串,我们并不能快速进入想要的设置项,更受不了的是有些常用的设置项竟然在最下边.因为前段时间没事做,于是乎写了个wp的工具类 ...

  9. 【Mybatis】<foreach>标签在mybatis中的使用

    mapper.xml如下: <select id="selectCkspcb" parameterType="java.util.Map" resultT ...

  10. BZOJ4883 棋盘上的守卫(环套树+最小生成树)

    容易想到网络流之类的东西,虽然范围看起来不太可做,不过这提供了一种想法,即将行列分别看做点.那么我们需要找一种连n+m条边的方案,使得可以从每条边中选一个点以覆盖所有点.显然每个点至少要连一条边.于是 ...