#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include "cxcore.h"
#include "cvaux.h"
#include <iostream>
#include"Timer.h"
using namespace std;
int otsu2 (IplImage *image);
CvBox2D findRectContours(const IplImage *gray);
void main()
{ IplImage* img =cvLoadImage("mark1.jpg",);
// cvCopyImage(srcImgGrey,img0tsu);
MyTimer mt;
mt.Reset();
mt.Start();
//Sleep(1000); int thre2;
thre2 = otsu2(img);
//cout<<"The Threshold of this Image in Otsu is:"<<thre2<<endl;//输出显示阀值
cvThreshold(img,img,thre2,,CV_THRESH_BINARY); // 二值化 // CvMemStorage * storage = cvCreateMemStorage(0);
// CvSeq * contour = 0; //cvFindContours(img,storage,&contour,sizeof(CvContour),1,2);
CvBox2D box=findRectContours(img);
mt.End(); cout<<box.center.x<<endl<<box.center.y<<endl<<box.size.height<<endl<<box.size.width<<endl<<mt.costTime<<endl;
cvDrawCircle(img,cvPoint(box.center.x,box.center.y),,cvScalar(,,),,,);
cvNamedWindow("img", CV_WINDOW_AUTOSIZE );
cvShowImage( "img", img);//显示图像
cvReleaseImage(&img);
cvWaitKey(); } CvBox2D findRectContours(const IplImage *gray)
{ CvBox2D box; CvSeq* firstContour = NULL;
CvMemStorage* storage = cvCreateMemStorage();
IplImage* contourImg = cvCreateImage(cvGetSize(gray), gray->depth, );
cvCopy(gray, contourImg);
cvFindContours(contourImg, storage, &firstContour, sizeof(CvContour), ,);
CvSeq* maxContour = firstContour;
CvSeq* Contour = firstContour;
while(Contour)
{
if(maxContour->total < Contour->total)
{
maxContour = Contour;
}
Contour = Contour->h_next;
} if(maxContour)
{
box = cvFitEllipse2(maxContour);
// CvPoint2D32f cross;
// float radius;
//cvMinEnclosingCircle(maxContour,&cross,&radius);
// cout<<cross.x<<endl<<cross.y<<endl;
//box.center.x=cross.x;box.center.y=cross.y;box.size.width=radius;
}
//cvDrawContours(contourImg,maxContour,cvScalar(0,0,255),cvScalar(0,0,255),1,1,0,cvPoint(0,0));
cvReleaseMemStorage(&storage);
return box;
}
/*======================================================================*/
/* OTSU global thresholding routine */
/*======================================================================*/
int otsu2 (IplImage *image)
{
int w = image->width;
int h = image->height; unsigned char*np; // 图像指针
unsigned char pixel;
int thresholdValue=; // 阈值
int ihist[]; // 图像直方图,256个点 int i, j, k; // various counters
int n, n1, n2, gmin, gmax;
double m1, m2, sum, csum, fmax, sb; // 对直方图置零...
memset(ihist, , sizeof(ihist)); gmin=; gmax=;
// 生成直方图
for (i =; i < h; i++)
{
np = (unsigned char*)(image->imageData + image->widthStep*i);
for (j =; j < w; j++)
{
pixel = np[j];
ihist[ pixel]++;
if(pixel > gmax) gmax= pixel;
if(pixel < gmin) gmin= pixel;
}
} // set up everything
sum = csum =0.0;
n =; for (k =; k <=; k++)
{
sum += k * ihist[k]; /* x*f(x) 质量矩*/
n += ihist[k]; /* f(x) 质量 */
} if (!n)
{
// if n has no value, there is problems...
//fprintf (stderr, "NOT NORMAL thresholdValue = 160\n");
thresholdValue =;
goto L;
} // do the otsu global thresholding method
fmax =-1.0;
n1 =;
for (k =; k <; k++)
{
n1 += ihist[k];
if (!n1) { continue; }
n2 = n - n1;
if (n2 ==) { break; }
csum += k *ihist[k];
m1 = csum / n1;
m2 = (sum - csum) / n2;
sb = n1 * n2 *(m1 - m2) * (m1 - m2);
/* bbg: note: can be optimized. */
if (sb > fmax)
{
fmax = sb;
thresholdValue = k;
}
} L:
for (i =; i < h; i++)
{
np = (unsigned char*)(image->imageData + image->widthStep*i);
for (j =; j < w; j++)
{
if(np[j] >= thresholdValue)
np[j] =;
else np[j] =;
}
} //cout<<"The Threshold of this Image in Otsu is:"<<thresholdValue<<endl;
return(thresholdValue);
}

opencv——拟合圆的更多相关文章

  1. (转)最小二乘法拟合圆公式推导及vc实现[r]

    (下文内容为转载,不过已经不清楚原创的是哪里了,特此说明) 转自: http://www.cnblogs.com/dotLive/archive/2006/10/09/524633.html 该网址下 ...

  2. .net core(c#)拟合圆测试

    说明 很多时候,我们需要运动物体的转弯半径去描述其机器性能.但在大多数的现实条件下,我们只能够获取到运动物体的 GPS 位置点集,并不能直接得到转弯半径或者圆心位置.为此,我们可以利用拟合圆的方式得到 ...

  3. [opencv]拟合vector<Mat>集合区域接近的元素

    vector<Rect> PublicCardFrameDetection::fitrect(vector<Rect> rects){ int size = rects.siz ...

  4. opencv:轮廓逼近与拟合

    轮廓逼近,本质上是减少编码点 拟合圆,生成最相似的圆或椭圆 #include <opencv2/opencv.hpp> #include <iostream> using na ...

  5. Python+OpenCV图像处理(十五)—— 圆检测

    简介: 1.霍夫圆变换的基本原理和霍夫线变换原理类似,只是点对应的二维极径.极角空间被三维的圆心和半径空间取代.在标准霍夫圆变换中,原图像的边缘图像的任意点对应的经过这个点的所有可能圆在三维空间用圆心 ...

  6. 【python+opencv】直线检测+圆检测

     Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...

  7. C#使用最小二乘法对多个离散点进行圆拟合

    /// <summary> /// 最小二乘法拟合圆,计算拟合圆半径和拟合圆圆心 /// </summary> /// <param name="points& ...

  8. (转载)找圆算法((HoughCircles)总结与优化

      Opencv内部提供了一个基于Hough变换理论的找圆算法,HoughCircle与一般的拟合圆算法比起来,各有优势:优势:HoughCircle对噪声点不怎么敏感,并且可以在同一个图中找出多个圆 ...

  9. 转载-找圆算法((HoughCircles)总结与优化-霍夫变换

    原文链接: http://www.opencv.org.cn/forum.php?mod=viewthread&tid=34096   找圆算法((HoughCircles)总结与优化 Ope ...

随机推荐

  1. spring boot + slf4j + log4j配置

    https://docs.spring.io/spring-boot/docs/1.5.6.RELEASE/reference/htmlsingle/#boot-features-logging ht ...

  2. JavaScript笔录

    JavaScript是一门编程语言,浏览器内置了JavaScript语言的解释器,所以在浏览器上按照JavaScript语言的规则编写相应代码之,浏览器可以解释并做出相应的处理. 1.JavaScri ...

  3. HTTP代理访问

    http请求 http://192.168.19.106:8090/pim/mcloud/device/exist.action   代理ip及端口 120.197.233.205 80   wire ...

  4. Warning: require(): open_basedir restriction in effect. File(/www/wwwroot/../thinkphp/start.php) is not within the allowed path(s):

    Warning: require(): open_basedir restriction in effect. File(/www/wwwroot//../thinkphp/start.php) is ...

  5. 关于OpenGL Framebuffer Object、glReadPixels与离屏渲染

    最近写论文需要用到离屏渲染(主要是因为模型太大普通窗口绘制根本做不了),于是翻阅了红宝书查了下相关api和用法.中文版的红宝书可读性有点差,很多地方翻译地晦涩,但好歹读起来比较快,主要相关章节为第8章 ...

  6. 在Android Studio 0.5.2中使用ArcGIS Android SDK

    环境 操作系统:Mac OSX 10.8.5Android Studio: 0.5.2ArcGIS Android SDK: 10.2.3 操作步骤 在Android Studio中新建一个Modul ...

  7. IDEA2017 破解方式

    1. 到网站 http://idea.lanyus.com/ 获取注册码. 2.填入下面的license server: http://intellij.mandroid.cn/ http://ide ...

  8. /etc/rc5.d/s991local: line25: eject:command not found错误

      使用虚拟机安装centos出现错误,原因是我使用的镜像是最小级别的,没有图形化界面,只有终端窗口 有人用vmware安装minimal centos报错/etc/rc5.d/s99local : ...

  9. shell编程——内部变量

    常用的内部变量有:echo, eval, exec, export, readonly, read, shift, wait, exit 和 点(.) echo:将变量名指定的变量显示到标准输出 [r ...

  10. 解剖Nginx·模块开发篇(4)模块开发中的命名规则和模块加载与运行流程

    1 命名规则 1.1 基本变量 基本变量有三个: ngx_module_t 类型的 ngx_http_foo_bar_module: ngx_command_t 类型的数组 ngx_http_foo_ ...