[BZOJ5073][Lydsy1710月赛]小A的咒语
description
你有一个\(A\)串和\(B\)串,你需要判断是否可以在\(A\)串中拆出\(x\)个互不相交的子串,使它们按顺序拼在一起可以组成\(B\)串。
\(|A|,|B|\le10^5,x\le100\)
sol
设\(f_{i,j}\)表示已经使用了\(i\)个\(A\)的子串,\(A\)已经使用到了\(j\)位置时\(B\)串中的最长匹配的长度,每次转移的时候显然回取\(A\)串中的\(j+1\)位置和\(B\)串中的\(f_{i,j}+1\)位置的\(lcp\)进行转移,再做一个前缀\(\max\)就好了。
\(lcp\)用后缀数组做到\(O(n\log n)-O(1)\),复杂度\(O(T(n\log n+nx))\)
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 2e5+5;
int T,n,m,K,len,val[N],t[N],x[N],y[N],SA[N],Rank[N],Height[20][N],lg[N],f[2][N];
char a[N],b[N];
bool cmp(int i,int j,int k){return y[i]==y[j]&&y[i+k]==y[j+k];}
void getSA(){
int m=30;
for (int i=0;i<=m;++i) t[i]=0;
for (int i=1;i<=len;++i) ++t[x[i]=val[i]];
for (int i=1;i<=m;++i) t[i]+=t[i-1];
for (int i=len;i;--i) SA[t[x[i]]--]=i;
for (int k=1;k<=len;k<<=1){
int p=0;
for (int i=0;i<=m;++i) y[i]=0;
for (int i=len-k+1;i<=len;++i) y[++p]=i;
for (int i=1;i<=len;++i) if (SA[i]>k) y[++p]=SA[i]-k;
for (int i=0;i<=m;++i) t[i]=0;
for (int i=1;i<=len;++i) ++t[x[y[i]]];
for (int i=1;i<=m;++i) t[i]+=t[i-1];
for (int i=len;i;--i) SA[t[x[y[i]]]--]=y[i];
swap(x,y);x[SA[1]]=p=1;
for (int i=2;i<=len;++i) x[SA[i]]=cmp(SA[i],SA[i-1],k)?p:++p;
if (p>=len) break;m=p;
}
for (int i=1;i<=len;++i) Rank[SA[i]]=i;
for (int i=1,j=0;i<=len;++i){
if (j) --j;
while (val[i+j]==val[SA[Rank[i]-1]+j]) ++j;
Height[0][Rank[i]]=j;
}
for (int i=2;i<=len;++i) lg[i]=lg[i>>1]+1;
for (int j=1;j<=lg[len];++j)
for (int i=1;i+(1<<j)-1<=len;++i)
Height[j][i]=min(Height[j-1][i],Height[j-1][i+(1<<j-1)]);
}
int lcp(int i,int j){
i=Rank[i],j=Rank[j];if (i>j) swap(i,j);
++i;int k=lg[j-i+1];
return min(Height[k][i],Height[k][j-(1<<k)+1]);
}
int main(){
T=gi();while (T--){
n=gi();m=gi();K=gi();scanf("%s",a+1);scanf("%s",b+1);
memset(Rank,0,sizeof(Rank));
for (int i=1;i<=n;++i) val[i]=a[i]-'a'+1;
for (int i=1;i<=m;++i) val[n+1+i]=b[i]-'a'+1;
val[n+1]=27;val[n+1+m+1]=0;len=n+m+1;getSA();
memset(f[0],0,sizeof(f[0]));
for (int i=1;i<=K;++i){
int now=i&1,pre=now^1;
memset(f[now],0,sizeof(f[now]));
for (int j=0;j<n;++j){
int gg=lcp(j+1,n+1+f[pre][j]+1);
f[now][j+gg]=max(f[now][j+gg],f[pre][j]+gg);
}
for (int j=1;j<=n;++j) f[now][j]=max(f[now][j],f[now][j-1]);
}
puts(f[K&1][n]==m?"YES":"NO");
}
return 0;
}
[BZOJ5073][Lydsy1710月赛]小A的咒语的更多相关文章
- [BZOJ5073] [Lydsy1710月赛]小A的咒语 后缀数组+dp+贪心
题目链接 首先这种题一看就是dp. 设\(dp[i][j]\)表示\(A\)序列中到\(i\)位之前,取了\(j\)段,在\(B\)中的最长的长度. 转移也比较简单 \[ dp[i][j] \to d ...
- 5073 [Lydsy1710月赛]小A的咒语
LINK:[Lydsy1710月赛]小A的咒语 每次给定两个串 要求从a串中选出x段拼成B串 能否做到.T组数据. \(n\leq 100000,m\leq 100000,T\leq 10,x\leq ...
- 【bzoj5073】[Lydsy1710月赛]小A的咒语 后缀数组+倍增RMQ+贪心+dp
题目描述 给出 $A$ 串和 $B$ 串,从 $A$ 串中选出至多 $x$ 个互不重合的段,使得它们按照原顺序拼接后能够得到 $B$ 串.求是否可行.多组数据. $T\le 10$ ,$|A|,|B| ...
- 【BZOJ5073】[Lydsy十月月赛]小A的咒语 DP(错解)
[BZOJ5073][Lydsy十月月赛]小A的咒语 题解:沙茶DP,完全不用后缀数组. 用f[i][j]表示用了A的前i个字符,用了j段,最远能匹配到哪.因为显然我们能匹配到的地方越远越好,所以我们 ...
- [BZOJ 5072][Lydsy1710月赛]小A的树
传送门 \(\color{green}{solution}\) 嗯...其实我也不太会,所以大胆猜个结论吧(后来证了一下,然后放弃了...). 我们发现如果要使一个联通块的黑点数量为\(k\)的方案最 ...
- BZOJ5072:[Lydsy1710月赛]小A的树(树形DP)
Description BZOJ只是扔了个下载链接 Solution 设$f[x][i]$表示$x$点选中$i$个黑点的最小连通块. 设$g[x][i]$表示$x$点选中$i$个黑点的最大连通块. 转 ...
- [BZOJ 5074][Lydsy1710月赛]小B的数字
传送门 \(\color{green}{solution}\) 设 \[b_{i}=2^{w_{i}},sum= \sum_{i=1}^{n}{w_{i}}\] 则对于任意\(a_{i}\)都有 \[ ...
- [Lydsy1710月赛] 小B的数字
神TM 又又又又是构造题..... 很简单的化简就是,把2^k[i]都换成k[i] ,然后就可以得出 对于任意的i,k[i] * a[i] >= ∑k[]. 最优的构造肯定是使 k[i] = ...
- bzoj 5072 [Lydsy1710月赛]小A的树——树形dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 发现对于每个子树,黑点个数确定时,连通块的大小取值范围一定是一段区间:所以考虑只最小化 ...
随机推荐
- APP Inventor 基于网络微服务器的即时通信APP
APP Inventor 基于网络微服务器的即时通信APP 一.总结 一句话总结:(超低配版的QQ,逃~) 1.APP Inventor是什么? google 傻瓜式 编程 手机 app App In ...
- Spring事务源码分析总结
Spring事务是我们日常工作中经常使用的一项技术,Spring提供了编程.注解.aop切面三种方式供我们使用Spring事务,其中编程式事务因为对代码入侵较大所以不被推荐使用,注解和aop切面的方式 ...
- ubuntu 14.04 如何安装nvidia显卡驱动 [转载]
我的机子装的是64位ubuntu 14.04 LTS系统,显卡是GeForce 405 ,想使用cuda所以需要装NVidia官方驱动,但是总是碰到 nouveau 驱动正在使用的问题.找了好久,网上 ...
- UVA-10269 Adventure of Super Mario (dijkstra)
题目大意:有A个村庄,B个城市,m条边,从起点到终点,找一条最短路径.但是,有一种工具可以使人不费力的移动L个长度,但始末点必须是城市或村庄.这种工具有k个,每个只能使用一次,并且在城市内部不可使用, ...
- C++多线程2.beginthread
C++ 多线程2 beginthread 启动线程知识 20131021 Reference: http://blog.csdn.net/laoyang360/article/details/7720 ...
- Winform 导航菜单的方法
http://blog.163.com/kunkun0921@126/blog/static/169204332201171610619611/ 第一种:使用OutlookBar第三方控件 第二种:使 ...
- New Concept English there (4)
20w/m These days, people who do manual work often receive far more money than people who work in off ...
- 【dlbook】优化
[神经网络优化的挑战] 一.病态: 虽然学习率很小,而且梯度大,但是由于Hessian阵的病态,二次项比一次项还要大,梯度下降事实上并不一定能下降,反而有可能上升.因此需要将学习率调低. 表现:梯度很 ...
- 在线机器学习FTRL(Follow-the-regularized-Leader)算法介绍
看到好文章,坚决转载!哈哈,学术目的~~ 最近几个同事在做推荐平台的项目,都问到怎么实现FTRL算法,要求协助帮忙实现FTRL的算法模块.今天也是有空,赶紧来做个整理.明天还要去上海参加天善智能组织的 ...
- IOS开发 __weak与__block修饰符到底有什么区别
API Reference对__block变量修饰符有如下几处解释: //A powerful feature of blocks is that they can modify variables ...