zoj3662Math Magic
Math Magic
Time Limit: 3 Seconds Memory Limit: 32768 KB
Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common multiple) of two positive numbers can be solved easily because of a * b = GCD (a, b) * LCM (a, b).
In class, I raised a new idea: "how to calculate the LCM of K numbers". It's also an easy problem indeed, which only cost me 1 minute to solve it. I raised my hand and told teacher about my outstanding algorithm. Teacher just smiled and smiled...
After class, my teacher gave me a new problem and he wanted me solve it in 1 minute, too. If we know three parameters N, M, K, and two equations:
1. SUM (A1, A2, ..., Ai, Ai+1,..., AK) = N
2. LCM (A1, A2, ..., Ai, Ai+1,..., AK) = M
Can you calculate how many kinds of solutions are there for Ai (Ai are all positive numbers). I began to roll cold sweat but teacher just smiled and smiled.
Can you solve this problem in 1 minute?
Input
There are multiple test cases.
Each test case contains three integers N, M, K. (1 ≤ N, M ≤ 1,000, 1 ≤ K ≤ 100)
Output
For each test case, output an integer indicating the number of solution modulo 1,000,000,007(1e9 + 7).
You can get more details in the sample and hint below.
Sample Input
4 2 2
3 2 2
Sample Output
1
2
Hint
The first test case: the only solution is (2, 2).
The second test case: the solution are (1, 2) and (2, 1).
这题时间卡的真紧啊!
#include <iostream>
#include <stdio.h>
#include <math.h>
#include <string.h>
using namespace std;
#define MAXN 1005
#define mod 1000000007
int lca[MAXN][MAXN],dp[2][MAXN][MAXN],vec[MAXN];
int gcd(int a,int b)
{
if(a==0)return b;
return gcd(b%a,a);
}
int main()
{
int n,m,k,i,j,now,no,k1,j1,ans,ii;
for(i=1;i<=1000;i++)
for(j=i;j<=1000;j++)
lca[j][i]=lca[i][j]=i/gcd(i,j)*j;
while(scanf("%d%d%d",&n,&m,&no)!=EOF)
{
now=0;
//memset(dp,0,sizeof(dp));
ans=0;
vec[ans++]=1;
for(i=2;i<=m;i++)
{
if(m%i==0)
vec[ans++]=i;
}
for(ii=0;ii<=n;ii++)
for(j=0;j<ans;j++)
dp[now][ii][vec[j]]=0;
dp[now][0][1]=1;
for(i=0;i<=no-1;i++)
{
now=now^1;
for(ii=0;ii<=n;ii++)
for(j=0;j<ans;j++)
dp[now][ii][vec[j]]=0;
for(j=i;j<=n;j++)
for(int j2=0;j2<ans;j2++)
{
k=vec[j2];
if(dp[now^1][j][k]==0)
continue;
for(int jj1=0;jj1<ans;jj1++)
{ j1=vec[jj1];
if(j1+j>n)
break;
k1=lca[k][j1];
if(k1>m||m%k1!=0)
continue;
dp[now][j1+j][k1]+=dp[now^1][j][k]; dp[now][j1+j][k1]%=mod;
}
} }
printf("%d\n",dp[now][n][m]%mod);
}
return 0;
}
zoj3662Math Magic的更多相关文章
- Codeforces CF#628 Education 8 D. Magic Numbers
D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- [8.3] Magic Index
A magic index in an array A[0...n-1] is defined to be an index such that A[i] = i. Given a sorted ar ...
- Python魔术方法-Magic Method
介绍 在Python中,所有以"__"双下划线包起来的方法,都统称为"Magic Method",例如类的初始化方法 __init__ ,Python中所有的魔 ...
- 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律
F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree
Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...
- 一个快速double转int的方法(利用magic number)
代码: int i = *reinterpret_cast<int*>(&(d += 6755399441055744.0)); 知识点: 1.reinterpret_cast&l ...
- MAGIC XPA最新版本Magic xpa 2.4c Release Notes
New Features, Feature Enhancements and Behavior ChangesSubforms – Behavior Change for Unsupported Ta ...
- Magic xpa 2.5发布 Magic xpa 2.5 Release Notes
Magic xpa 2.5發佈 Magic xpa 2.5 Release Notes Magic xpa 2.5 Release NotesNew Features, Feature Enhance ...
- How Spring Boot Autoconfiguration Magic Works--转
原文地址:https://dzone.com/articles/how-springboot-autoconfiguration-magic-works In my previous post &qu ...
随机推荐
- getattr(sys.modules[__name__], func_name)
有时我们需要将一个文件的信息(类.函数及变量)保存到文件,我们不能直接保存函数对象,而是将其转化为fn.__name__,问题来了,当我们想通过读取文件的形式重新配置这些类.函数时,该如何把这些字符串 ...
- 最大流KK算法
最大流KK算法 #include<iostream> #include<stdio.h> #include<string.h> #include<math.h ...
- [BZOJ4817][SDOI2017]树点涂色(LCT+DFS序线段树)
4817: [Sdoi2017]树点涂色 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 692 Solved: 408[Submit][Status ...
- [BZOJ 4071] 巴邻旁之桥
Link: BZOJ 4071传送门 Solution: 首先算出能提前算的贡献 $K=1$:肯定选中间的点,小学数学 $K=2$:对于每对$(x,y)$一定选离$(x+y)/2$近的桥 也就是说将$ ...
- BZOJ1002輪狀病毒 暴搜 + 找規律 + 高精度
@[暴搜, 找規律, 高精度] Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个\(n\)轮状基由圆环上\(n\)个不同的基原子和圆心处一个核原子构成的,2个 ...
- Codeforces Beta Round #5 D. Follow Traffic Rules 物理
D. Follow Traffic Rules 题目连接: http://www.codeforces.com/contest/5/problem/D Description Everybody kn ...
- Spark调研笔记第4篇 - PySpark Internals
事实上.有两个名为PySpark的概念.一个是指Sparkclient内置的pyspark脚本.而还有一个是指Spark Python API中的名为pyspark的package. 本文仅仅对第1个 ...
- 破解NET的四大神器[转]
原本这篇文章可以更早一星期写出来与大家分享,由于某方面的原因耽搁到现在,心里竟有那么一点好像对不住大家的感觉.这当然与神器有关,因为我发现利用这四大神器我似乎觉得几乎所有的NET程序破解都不在话下了 ...
- C语言跟内存分配方式-alloc malloc calloc
转载:http://blog.csdn.net/ubuntulover/article/details/7581317 (1) 从静态存储区域分配.内存在程序编译的时候就已经分配好,这块内存在程序的整 ...
- 【提醒】使用 iptables 时,特别注意 规则的顺序
在 centos 上安装 redis 服务器,很快就搞定了,服务器上使用 redis-cl 测试都没有问题了. 但到宿主机上测试,怎么测试都不通过,关键是:关闭了 centos 的 Iptables ...