Math Magic


Time Limit: 3 Seconds       Memory Limit: 32768 KB

Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common multiple) of two positive numbers can be solved easily because of a * b = GCD (a, b) * LCM (a, b).

In class, I raised a new idea: "how to calculate the LCM of K numbers". It's also an easy problem indeed, which only cost me 1 minute to solve it. I raised my hand and told teacher about my outstanding algorithm. Teacher just smiled and smiled...

After class, my teacher gave me a new problem and he wanted me solve it in 1 minute, too. If we know three parameters N, M, K, and two equations:

1. SUM (A1, A2, ..., Ai, Ai+1,..., AK) = N 
2. LCM (A1, A2, ..., Ai, Ai+1,..., AK) = M

Can you calculate how many kinds of solutions are there for Ai (Ai are all positive numbers). I began to roll cold sweat but teacher just smiled and smiled.

Can you solve this problem in 1 minute?

Input

There are multiple test cases.

Each test case contains three integers N, M, K. (1 ≤ N, M ≤ 1,000, 1 ≤ K ≤ 100)

Output

For each test case, output an integer indicating the number of solution modulo 1,000,000,007(1e9 + 7).

You can get more details in the sample and hint below.

Sample Input

4 2 2
3 2 2

Sample Output

1
2

Hint

The first test case: the only solution is (2, 2).

The second test case: the solution are (1, 2) and (2, 1).

这题时间卡的真紧啊!

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <string.h>
using namespace std;
#define MAXN 1005
#define mod 1000000007
int lca[MAXN][MAXN],dp[2][MAXN][MAXN],vec[MAXN];
int gcd(int a,int b)
{
if(a==0)return b;
return gcd(b%a,a);
}
int main()
{
int n,m,k,i,j,now,no,k1,j1,ans,ii;
for(i=1;i<=1000;i++)
for(j=i;j<=1000;j++)
lca[j][i]=lca[i][j]=i/gcd(i,j)*j;
while(scanf("%d%d%d",&n,&m,&no)!=EOF)
{
now=0;
//memset(dp,0,sizeof(dp));
ans=0;
vec[ans++]=1;
for(i=2;i<=m;i++)
{
if(m%i==0)
vec[ans++]=i;
}
for(ii=0;ii<=n;ii++)
for(j=0;j<ans;j++)
dp[now][ii][vec[j]]=0;
dp[now][0][1]=1;
for(i=0;i<=no-1;i++)
{
now=now^1;
for(ii=0;ii<=n;ii++)
for(j=0;j<ans;j++)
dp[now][ii][vec[j]]=0;
for(j=i;j<=n;j++)
for(int j2=0;j2<ans;j2++)
{
k=vec[j2];
if(dp[now^1][j][k]==0)
continue;
for(int jj1=0;jj1<ans;jj1++)
{ j1=vec[jj1];
if(j1+j>n)
break;
k1=lca[k][j1];
if(k1>m||m%k1!=0)
continue;
dp[now][j1+j][k1]+=dp[now^1][j][k]; dp[now][j1+j][k1]%=mod;
}
} }
printf("%d\n",dp[now][n][m]%mod);
}
return 0;
}

zoj3662Math Magic的更多相关文章

  1. Codeforces CF#628 Education 8 D. Magic Numbers

    D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. [8.3] Magic Index

    A magic index in an array A[0...n-1] is defined to be an index such that A[i] = i. Given a sorted ar ...

  3. Python魔术方法-Magic Method

    介绍 在Python中,所有以"__"双下划线包起来的方法,都统称为"Magic Method",例如类的初始化方法 __init__ ,Python中所有的魔 ...

  4. 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律

    F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...

  5. 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree

    Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...

  6. 一个快速double转int的方法(利用magic number)

    代码: int i = *reinterpret_cast<int*>(&(d += 6755399441055744.0)); 知识点: 1.reinterpret_cast&l ...

  7. MAGIC XPA最新版本Magic xpa 2.4c Release Notes

    New Features, Feature Enhancements and Behavior ChangesSubforms – Behavior Change for Unsupported Ta ...

  8. Magic xpa 2.5发布 Magic xpa 2.5 Release Notes

    Magic xpa 2.5發佈 Magic xpa 2.5 Release Notes Magic xpa 2.5 Release NotesNew Features, Feature Enhance ...

  9. How Spring Boot Autoconfiguration Magic Works--转

    原文地址:https://dzone.com/articles/how-springboot-autoconfiguration-magic-works In my previous post &qu ...

随机推荐

  1. (转)Ubuntu 16.04 安裝Docker(PS:本文适用amd64位的ubuntu系统)

    1.前置安裝,確保你的系統是64位 $ sudo apt-get install \ apt-transport-https \ ca-certificates \ curl \ software-p ...

  2. 最大流KK算法

    最大流KK算法 #include<iostream> #include<stdio.h> #include<string.h> #include<math.h ...

  3. bzoj5299: [Cqoi2018]解锁屏幕

    题目链接 bzoj 5299: [Cqoi2018]解锁屏幕 题解 很水的装压dp,相信没人需要看题解.... dp[i][j]表示状态为i最后一个到的点为j,然后转移就很好写了 不过 我读入优化没读 ...

  4. []APC001

    题目质量都好高啊... A:求一个是$X$的倍数但不是$Y$的倍数的数,无解输出$-1$ 无解就是$Y|X$,否则输出$X$即可 B:给定$a_{1\cdots n},b_{1\cdots n}$,求 ...

  5. bzoj1393 旅游航道

    Description SGOI旅游局在SG-III星团开设了旅游业务,每天有数以万计的地球人来这里观光,包括联合国秘书长,各国总统和SGOI总局局长等.旅游线路四通八达,每天都有总躲得载客太空飞船在 ...

  6. 使用CefSharp在.Net程序中嵌入Chrome浏览器(二)——参数设置

    在实现了.Net程序中嵌入Chrome浏览器后,下一步的个性化操作就是加入一些设置了,在前面的文章中,我们可以看到在使用Chrome控件前,有如下一个操作: var setting = new Cef ...

  7. eclipse.ini 文件使用说明

    http://wiki.eclipse.org/Eclipse.ini Overview Eclipse startup is controlled by the options in $ECLIPS ...

  8. JavaScript在IE6下超级链接window.location.href不跳转的bug 及 解决方案

    今天遇到个很诡异的问题,就是<a href="javascript:void(0);" onclick="window.location.href=url" ...

  9. redis.conf配置解释

    daemonize:如果需要在后台运行,把该项改为yespidfile:配置多个pid的地址,默认在/var/run/redis.pidbind:绑定ip,设置后只接受来自该ip的请求port:监听端 ...

  10. .NET:异常处理的两条“黄金定律”,求批!

    背景 架构之处必须考虑:如何处理异常?如何定义自己的异常体系?本文为了强化这个概念而写. 异常处理的两条“黄金定律” 自己抄袭的两条规律: 异常不能穿过“边界类”. 异常不能在没有恢复的情况下“吞掉” ...