Math Magic


Time Limit: 3 Seconds       Memory Limit: 32768 KB

Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common multiple) of two positive numbers can be solved easily because of a * b = GCD (a, b) * LCM (a, b).

In class, I raised a new idea: "how to calculate the LCM of K numbers". It's also an easy problem indeed, which only cost me 1 minute to solve it. I raised my hand and told teacher about my outstanding algorithm. Teacher just smiled and smiled...

After class, my teacher gave me a new problem and he wanted me solve it in 1 minute, too. If we know three parameters N, M, K, and two equations:

1. SUM (A1, A2, ..., Ai, Ai+1,..., AK) = N 
2. LCM (A1, A2, ..., Ai, Ai+1,..., AK) = M

Can you calculate how many kinds of solutions are there for Ai (Ai are all positive numbers). I began to roll cold sweat but teacher just smiled and smiled.

Can you solve this problem in 1 minute?

Input

There are multiple test cases.

Each test case contains three integers N, M, K. (1 ≤ N, M ≤ 1,000, 1 ≤ K ≤ 100)

Output

For each test case, output an integer indicating the number of solution modulo 1,000,000,007(1e9 + 7).

You can get more details in the sample and hint below.

Sample Input

4 2 2
3 2 2

Sample Output

1
2

Hint

The first test case: the only solution is (2, 2).

The second test case: the solution are (1, 2) and (2, 1).

这题时间卡的真紧啊!

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <string.h>
using namespace std;
#define MAXN 1005
#define mod 1000000007
int lca[MAXN][MAXN],dp[2][MAXN][MAXN],vec[MAXN];
int gcd(int a,int b)
{
if(a==0)return b;
return gcd(b%a,a);
}
int main()
{
int n,m,k,i,j,now,no,k1,j1,ans,ii;
for(i=1;i<=1000;i++)
for(j=i;j<=1000;j++)
lca[j][i]=lca[i][j]=i/gcd(i,j)*j;
while(scanf("%d%d%d",&n,&m,&no)!=EOF)
{
now=0;
//memset(dp,0,sizeof(dp));
ans=0;
vec[ans++]=1;
for(i=2;i<=m;i++)
{
if(m%i==0)
vec[ans++]=i;
}
for(ii=0;ii<=n;ii++)
for(j=0;j<ans;j++)
dp[now][ii][vec[j]]=0;
dp[now][0][1]=1;
for(i=0;i<=no-1;i++)
{
now=now^1;
for(ii=0;ii<=n;ii++)
for(j=0;j<ans;j++)
dp[now][ii][vec[j]]=0;
for(j=i;j<=n;j++)
for(int j2=0;j2<ans;j2++)
{
k=vec[j2];
if(dp[now^1][j][k]==0)
continue;
for(int jj1=0;jj1<ans;jj1++)
{ j1=vec[jj1];
if(j1+j>n)
break;
k1=lca[k][j1];
if(k1>m||m%k1!=0)
continue;
dp[now][j1+j][k1]+=dp[now^1][j][k]; dp[now][j1+j][k1]%=mod;
}
} }
printf("%d\n",dp[now][n][m]%mod);
}
return 0;
}

zoj3662Math Magic的更多相关文章

  1. Codeforces CF#628 Education 8 D. Magic Numbers

    D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. [8.3] Magic Index

    A magic index in an array A[0...n-1] is defined to be an index such that A[i] = i. Given a sorted ar ...

  3. Python魔术方法-Magic Method

    介绍 在Python中,所有以"__"双下划线包起来的方法,都统称为"Magic Method",例如类的初始化方法 __init__ ,Python中所有的魔 ...

  4. 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律

    F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...

  5. 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree

    Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...

  6. 一个快速double转int的方法(利用magic number)

    代码: int i = *reinterpret_cast<int*>(&(d += 6755399441055744.0)); 知识点: 1.reinterpret_cast&l ...

  7. MAGIC XPA最新版本Magic xpa 2.4c Release Notes

    New Features, Feature Enhancements and Behavior ChangesSubforms – Behavior Change for Unsupported Ta ...

  8. Magic xpa 2.5发布 Magic xpa 2.5 Release Notes

    Magic xpa 2.5發佈 Magic xpa 2.5 Release Notes Magic xpa 2.5 Release NotesNew Features, Feature Enhance ...

  9. How Spring Boot Autoconfiguration Magic Works--转

    原文地址:https://dzone.com/articles/how-springboot-autoconfiguration-magic-works In my previous post &qu ...

随机推荐

  1. 【最小路径覆盖】BZOJ2150-部落战争

    [题目大意] 给出一张图,'*'表示不能走的障碍.已知每只军队可以按照r*c的方向行军,且军队与军队之间路径不能交叉.问占据全部'.'最少要多少支军队? [思路] 首先注意题意中有说“军队只能往下走” ...

  2. CSS的flex布局(转载)

    我们之前已经学过一些布局模型,比如说浮动,绝对定位等等,但是这些布局方式一是不够简洁,而是使用的范围确实是太窄了. flex模型拥有比较多的属性,来设置多样的布局方式,接下来我们就详细介绍各种属性对布 ...

  3. [转][Android] ListView中getView的原理+如何在ListView中放置多个item

      ListView 和 Adapter 的基础 工作原理: ListView 针对List中每个item,要求 adapter “给我一个视图” (getView). 一个新的视图被返回并显示 如果 ...

  4. Unity Pivot/Center与Local/Global总结

    Untiy左上角有两个按钮  Pivot/Center 和 Local/Global  它们叫做 变换Gizmo工具 Pivot/Center:现实游戏对象的轴心参考点.Center为以所有选中物体所 ...

  5. 动软代码生成器连接Oracle 11g

      首先要说明的是:如果你连接的是远程的Oracle服务器,你本地机器必须装Oracle客户端,然后 用sqldeveloper 先建立一个连接. 然后你才能用.NET动软代码生成器连接到数据库. 因 ...

  6. PHP大转盘中奖概率算法实例

    本文实例讲述了PHP大转盘中奖概率算法的实现方法,分享给大家供大家参考.具体如下: 大转盘是最近很多线上网动中一个比较有意思的东西了,下面我们就来看看这个大转盘中奖概率算法与例子,希望对各位有所帮助. ...

  7. 【MongoDB】windows下搭建Mongo主(Master)/从(slave)数据库同步

    在前面一系列的文章中.我们讲述了mongodb的基本操作,高级查询以及索引的使用. 该篇博客主要说明在windows系统怎样创建主从数据库同步: 须要启动两个mongoDb文档数据库,一个是主模式启动 ...

  8. OSChina.net 的 Tomcat 配置 server.xml 参考

    这是目前 oschina.net 正在使用的 tomcat 的 server.xml 的配置文件内容 <Server port="9005" shutdown="S ...

  9. Raspberry pi,一个好玩的派:第八季 Raspbmc(下)

    上一季安装好Raspbmc就等着这一季好好玩耍呢. 我们要在这一季中完毕例如以下任务:调整分辨率.连接wifi并在无线路由器中设置固定IP.手机遥控Raspbmc.改变语言为中文.远程訪问Raspbe ...

  10. svn使用经验---不断总结

    删除文件或文件夹 svn rm  名字   --force svn  ci   (系统会提示输入提交日志) 执行完这两步后,才能被真正删除 添加文件或文件夹 svn add  文件名 --force ...