【CF802C】 Heidi and Library (hard)(费用流)
题目链接
感觉跟餐巾计划问题有点像。费用流。
决定每天买不买不太好搞,不如先把所有东西都买进来,再卖掉不必要的。
拆点,每个点拆成\(x,y\)。
源点向每个点的\(x\)连费用为当天的价格,流量为1的边。
每个点的\(y\)向汇点连费用为0,流量为1的边。
每个点\(x\)向\(y\)连流量为1,费用为0的边。
此时流出的已经等于流入的了,也就是说最大流一定为\(n\)。
现在考虑加入费用限制。
每天的\(x\)向下一天的\(x\)连流量为\(k-1\),费用为0的边,表示可以不扔,留到明天,但明天的书还需要一个位置,所以是\(k-1\)。
每天的前一天向上一个\(a_i\)出现的位置的\(y\)连一条费用为\(-c_{a_i}\),流量为1的边,表示在已经有这本书的情况下,可以卖掉这本书。
此时求出最小费用即为答案。
#include <cstdio>
#include <queue>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 210;
const int MAXM = 200010;
queue <int> q;
int s, t, now, n;
struct Edge{
int from, next, to, rest, cost;
}e[MAXM];
int head[MAXN], num = 1, dis[MAXN], vis[MAXN], Flow[MAXN], pre[MAXN];
inline void Add(int from, int to, int flow, int cost){
e[++num] = (Edge){ from, head[from], to, flow, cost }; head[from] = num;
e[++num] = (Edge){ to, head[to], from, 0, -cost }; head[to] = num;
}
int RoadsExist(){
q.push(s);
memset(dis, 127, sizeof dis);
dis[s] = 0; Flow[s] = INF; pre[t] = 0;
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = 0;
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && dis[e[i].to] > dis[now] + e[i].cost){
dis[e[i].to] = dis[now] + e[i].cost;
pre[e[i].to] = i;
Flow[e[i].to] = min(Flow[now], e[i].rest);
if(!vis[e[i].to]){
vis[e[i].to] = 1;
q.push(e[i].to);
}
}
}
return pre[t];
}
int k, maxflow, mincost, sum;
int a[MAXN], c[MAXN], last[MAXN];
int main(){
scanf("%d%d", &n, &k); s = 199; t = 200;
for(int i = 1; i <= n; ++i) scanf("%d", &a[i]);
for(int i = 1; i <= n; ++i) scanf("%d", &c[i]);
for(int i = 1; i <= n; ++i){
Add(s, i, 1, c[a[i]]);
if(i != 1) Add(i - 1, i, k - 1, 0);
Add(i, i + n, 1, 0);
if(last[a[i]]) Add(i - 1, last[a[i]] + n, 1, -c[a[i]]);
Add(i + n, t, 1, 0);
last[a[i]] = i;
}
while(RoadsExist()){
mincost += Flow[t] * dis[t];
for(int i = t; i != s; i = e[pre[i]].from){
e[pre[i]].rest -= Flow[t];
e[pre[i] ^ 1].rest += Flow[t];
}
}
printf("%d\n", mincost);
return 0;
}
【CF802C】 Heidi and Library (hard)(费用流)的更多相关文章
- CF802C Heidi and Library hard 费用流 区间k覆盖问题
LINK:Heidi and Library 先说一下简单版本的 就是权值都为1. 一直无脑加书 然后发现会引起冲突,可以发现此时需要扔掉一本书. 扔掉的话 可以考虑扔掉哪一本是最优的 可以发现扔掉n ...
- 【CF802C】Heidi and Library (hard) 费用流
[CF802C]Heidi and Library (hard) 题意:有n个人依次来借书,第i人来的时候要求书店里必须有种类为ai的书,种类为i的书要花费ci块钱购入.而书店的容量只有k,多余的书只 ...
- CF.802C.Heidi and Library (hard) (费用流zkw)
题目链接 复习了下餐巾计划问题.全忘了=-= 首先这是一道网络流.然后本题有\(n\)种建图方法,以及\(smy\) dalao还有单纯形做法. 先假设所有物品都是买入的.那么对于每一天,拆成两个点\ ...
- 题解-CF802C Heidi and Library (hard)
题面 CF802C Heidi and Library (hard) 有一个大小为 \(k\) 的空书架.有 \(n\) 天和 \(n\) 种书,每天要求书架中有书 \(a_i\).每天可以多次买书, ...
- CF802C Heidi and Library (hard)
题目描述 你有一个容量为k的空书架,现在共有n个请求,每个请求给定一本书ai,如果你的书架里没有这本书,你就必须以ci的价格购买这本书放入书架.当然,你可以在任何时候丢掉书架里的某本书.请求出完成这n ...
- CF802C Heidi and Library (hard) 最小费用流
你有一个容量为k的空书架,现在共有n个请求,每个请求给定一本书ai,如果你的书架里没有这本书,你就必须以ci的价格购买这本书放入书架. 当然,你可以在任何时候丢掉书架里的某本书.请求出完成这n个请求所 ...
- 【CF802C】Heidi and Library(网络流)
[CF802C]Heidi and Library(网络流) 题面 CF 洛谷 题解 前面两个Easy和Medium都是什么鬼玩意啊.... 不难发现如果这天的要求就是第\(a_i\)种书的话,那么\ ...
- C. Heidi and Library (神奇的网络流)
C. Heidi and Library 题意 有 n 种分别具有价格 b 的书 a ,图书馆里最多同时存放 k 本书,已知接下来 n 天每天都有一个人来看某一本书,如果图书馆里没有则需要购买,问最少 ...
- hdu-5988 Coding Contest(费用流)
题目链接: Coding Contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Ot ...
随机推荐
- Python入门:认识变量和字符串
几个月前,我开始学习个人形象管理,从发型.妆容.服饰到仪表仪态,都开始做全新改造,在塑造个人风格时,最基础的是先了解自己属于哪种风格,然后找到参考对象去模仿,可以是自己欣赏的人.明星或模特等,直至最后 ...
- centOS7设置静态ip后无法上网的解决,【亲可测】
最近在VMware虚拟机里玩Centos,装好后发现上不了网.经过一番艰辛的折腾,终于找到出解决问题的方法了.最终的效果是无论是ping内网IP还是ping外网ip,都能正常ping通.方法四步走: ...
- Django之contenttypes的应用
Django contenttypes 应用 简介 contenttypes 是Django内置的一个应用,可以追踪项目中所有app和model的对应关系,并记录在ContentType表中. 每当我 ...
- cat命令和EOF标识输出shell到文件
在某些场合,可能我们需要在脚本中生成一个临时文件,然后把该文件作为最终文件放入目录中.(可参考ntop.spec文件)这样有几个好处,其中之一就是临时文件不是唯一的,可以通过变量赋值,也可根据不同的判 ...
- XHTML5 与 HTML 4.01的差异
在 HTML 4.01 中,td 元素的 "bgcolor"."height"."width" 以及 "nowrap" ...
- javascript之彻底理解this
彻底理解this,需要彻底理解函数 函数是复杂类型,存储在堆中. 函数是独立的, 对象中的方法只是对象中有个函数的引用 函数被调用时,调用者会像被调用者提供个上下文环境, 这个环境就是this 构造 ...
- linux下sublime text 3安装到配置
1. Sublime Text 3的下载安装 到官方网站上http://www.sublimetext.com/3下载64位(系统位64位)的.deb安装包(http://c758482.r82.cf ...
- The Toll! Revisited UVA - 10537(变形。。)
给定图G=(V,E)G=(V,E),VV中有两类点,一类点(AA类)在进入时要缴纳1的费用,另一类点(BB类)在进入时要缴纳当前携带金额的1/20(不足20的部分按20算) 已知起点为SS,终点为TT ...
- What Is The Promiscuous Mode
What Is The Promiscuous Mode? Some Network Interface Cards (NICs) may not allow network traffic afte ...
- 20135239 益西拉姆 linux内核分析 使用库函数API和C代码中嵌入汇编代码两种方式使用同一个系统调用
https://drive.wps.cn/preview#l/759e32d65654419cb765da932cdf5cdc 本次直接在wps上写的,因为不能连同图片一起粘贴过来,一个一个粘比较费时 ...