一、归一化(也说标准化)作用

1)将有量纲特征转化为无量纲特征

2)能够加快收敛(主要指梯度下降法时)

二、Octave中计算     

    mean(A)   求解矩阵中每一列的均值

std(A)    求解矩阵中每一列的标准差

   在Octave中对样本进行归一下代码如下:

mu=mean(X);
          sigma=std(X);
          X_norm=(X.-mu)./sigma

备注:在进行归一化时,训练样本中的均值与标准差,应保存起来,在预测时依然可以使用。

Coursera在线学习---第三节.归一化处理(Normalize)的更多相关文章

  1. Coursera在线学习---第六节.构建机器学习系统

    备: High bias(高偏差) 模型会欠拟合    High variance(高方差) 模型会过拟合 正则化参数λ过大造成高偏差,λ过小造成高方差 一.利用训练好的模型做数据预测时,如果效果不好 ...

  2. Coursera在线学习---第一节.梯度下降法与正规方程法求解模型参数比较

    一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1 ...

  3. Coursera在线学习---第十节.大规模机器学习(Large Scale Machine Learning)

    一.如何学习大规模数据集? 在训练样本集很大的情况下,我们可以先取一小部分样本学习模型,比如m=1000,然后画出对应的学习曲线.如果根据学习曲线发现模型属于高偏差,则应在现有样本上继续调整模型,具体 ...

  4. Coursera在线学习---第九节(2).推荐系统

    一.基于内容的推荐系统(Content Based Recommendations) 所谓基于内容的推荐,就是知道待推荐产品的一些特征情况,将产品的这些特征作为特征变量构建模型来预测.比如,下面的电影 ...

  5. Coursera在线学习---第九节(1).异常数据检测(Anomaly Detection)

    一.如何构建Anomaly Detection模型? 二.如何评估Anomaly Detection系统? 1)将样本分为6:2:2比例 2)利用交叉验证集计算出F1值,可以用F1值选取概率阈值ξ,选 ...

  6. Coursera在线学习---第八节.K-means聚类算法与主成分分析(PCA)

    一.K-means聚类中心初始化问题. 1)随机初始化各个簇类的中心,进行迭代,直到收敛,并计算代价函数J. 如果k=2~10,可以进行上述步骤100次,并分别计算代价函数J,选取J值最小的一种聚类情 ...

  7. Coursera在线学习---第七节.支持向量机(SVM)

    一.代价函数   对比逻辑回归与支持向量机代价函数. cost1(z)=-log(1/(1+e-z)) cost0(z)=-log(1-1/(1+e-z)) 二.支持向量机中求解代价函数中的C值相当于 ...

  8. Coursera在线学习---第五节.Logistic Regression

    一.假设函数与决策边界 二.求解代价函数 这样推导后最后发现,逻辑回归参数更新公式跟线性回归参数更新方式一摸一样. 为什么线性回归采用最小二乘法作为求解代价函数,而逻辑回归却用极大似然估计求解? 解答 ...

  9. Coursera在线学习---第四节.过拟合问题

    一.解决过拟合问题方法 1)减少特征数量 --人为筛选 --靠模型筛选 2)正则化(Regularization) 原理:可以降低参数Θ的数量级,使一些Θ值变得非常之小.这样的目的既能保证足够的特征变 ...

随机推荐

  1. 10个linux网络和监控命令

    我下面列出来的10个基础的每个linux用户都应该知道的网络和监控命令.网络和监控命令类似于这些: hostname, ping, ifconfig, iwconfig, netstat, nsloo ...

  2. 按着shift键对dbgrid进行多条记录选择的问题(50分)

    可以用sendmessage,想dbgrid 发键盘信息,按下shift键,同时按下button1procedure TForm1.Button1Click(Sender: TObject);vari ...

  3. Vue.js 判断对象属性是否存,不存在添加

    Vue.set是可以对对象添加属性的,这里item对象添加一个checked属性 //if(typeof item.checked=='undefined'){if(!this.item.checke ...

  4. SPOJ3713——Primitive Root

    终于有一个SPOJ题目是我自己独立做出来的,ORZ,太感动了. 题目意思是给你一个素数,问你一个数r是否满足,r,r^2,r^3,……,r^p-1,全不相同. 以前做过这种类型的题目额.是这样的. 根 ...

  5. CF486D-Valid Sets

    题目 给出一个\(n\)个点的树,每个点有权值\(a_i\),再给出一个\(d\),问有多少个非空点集满足: 点集在树上构成联通子图 \[\max _{v\in S}a_v -\min _{v\in ...

  6. bzoj2386 [CEOI2011] Team

    题意 给你n个数,每个数的大小在1到n之间,要求把它们分成几组,每个数字的大小要小于等于它所在组中的数字总个数,问最多能分出多少组. 分析 首先把所有数字排序,比较显然的是最后一定存在一个最优解是按这 ...

  7. 批量后台执行fio性能测试脚本

    安装ansible工具: )直接yum install -y ansible; )然后更改配置,/etc/ansible/ansible.cfg,将里面的host_key_checking = Fal ...

  8. BZOJ4896 THUSC2016补退选(trie)

    字符串扔进trie,vector记录每个前缀出现次数的最大值的更新记录即可. #include<iostream> #include<cstdio> #include<c ...

  9. Qt Widgets、QML、Qt Quick的区别

    Qt Widgets.QML.Qt Quick的区别 简述 看了之前关于 QML 的一些介绍,很多人难免会有一些疑惑: Q1:QML 和 Qt Quick 之间有什么区别? Q2:QtQuick 1. ...

  10. python之快速排序

    快速排序(Quicksort)是对冒泡排序的一种改进. 快速排序由C. A. R. Hoare在1962年提出.它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另 ...