【BZOJ】2154: Crash的数字表格 莫比乌斯反演
【题意】给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7。
【算法】数论(莫比乌斯反演)
【题解】
$$ans=\sum_{i\leq n}\sum_{j\leq m}\frac{i*j}{gcd(i,j)}$$
$$ans=\sum_{d\leq min(n,m)}1/d\sum_{i\leq n}\sum_{j\leq m}[gcd(i,j)=d]i*j$$
$$ans=\sum_{d\leq min(n,m)}d\sum_{i\leq n/d}\sum_{j\leq m/d}[gcd(i,j)=1]i*j$$
发现后面部分只和n/d,m/d有关,于是封装后分块取值优化。
★$$ans=\sum_{d\leq min(n,m)}d*F(n/d,m/d)$$
$$F(n,m)=\sum_{i\leq n}\sum_{j\leq m}[gcd(i,j)=1]i*j$$
运用e=i*μ反演易得
★$$F(n,m)=\sum_{d\leq min(n,m)}\mu (d)*d^2*sum(n/d,m/d)$$
$$sum(n,m)=\sum_{i\leq n}\sum_{j\leq m}i*j=\sum_{i\leq n}i\sum_{j\leq m}j$$
★$$sum(n,m)=\frac{n(n+1)}{2}*\frac{m(m+1)}{2}$$
(这步由一般分配律)
最后就是两次分块取值优化,√n*√n,复杂度O(n)。
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=,MOD=;
int sum[maxn],n,m,miu[maxn],prime[maxn],tot;
bool mark[maxn];
int M(int x){return x>=MOD?x-MOD:x;}
int SUM(int x,int y){return 1ll*x*(x+)/%MOD*(1ll*y*(y+)/%MOD)%MOD;}
int solve(int x,int y){
int z=min(x,y),ans=,pos=;
for(int i=;i<=z;i=pos+){
pos=min(x/(x/i),y/(y/i));
ans=(ans+1ll*(sum[pos]-sum[i-])*SUM(x/i,y/i)%MOD)%MOD;
}
return ans;
}
int main(){
scanf("%d%d",&n,&m);
int z=min(n,m);
miu[]=sum[]=;
for(int i=;i<=z;i++){
if(!mark[i])miu[prime[++tot]=i]=-;
for(int j=;j<=tot&&i*prime[j]<=z;j++){
mark[i*prime[j]]=;
if(i%prime[j]==)break;
miu[i*prime[j]]=-miu[i];
}
sum[i]=(sum[i-]+1ll*i*i*miu[i]%MOD)%MOD;
}
int pos=,ans=;
for(int i=;i<=z;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(pos+i)*(pos-i+)/%MOD*solve(n/i,m/i))%MOD;
}
printf("%d",(ans+MOD)%MOD);
return ;
}
【BZOJ】2154: Crash的数字表格 莫比乌斯反演的更多相关文章
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- Bzoj 2154: Crash的数字表格(积性函数)
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...
- 【刷题】BZOJ 2154 Crash的数字表格
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- ●BZOJ 2154 Crash的数字表格
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...
随机推荐
- CSS中px和em属性的特点与区别
详解px和em的特点和区别象素px是我们在定义CSS中经常用到的尺寸大小单位,而em在国外网站中经常被使用,px和em之间究竟有什么区别和特点呢?◆px像素(Pixel),相对长度单位.像素px是相对 ...
- mac python install zlib not available
用brew install 3.4.4(python)时报 zipimport.ZipImportError: can't decompress data; zlib not available 的错 ...
- kafka describe 显示结果解释
> bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic my-replicated-topic Topic:my- ...
- 剖析Vue原理&实现双向绑定MVVM-2
vue.js 最核心的功能有两个,一是响应式的数据绑定系统,二是组件系统.本文仅探究双向绑定是怎样实现的.先讲涉及的知识点,再用简化得不能再简化的代码实现一个简单的 hello world 示例. 一 ...
- 我的 MyBatis 实现的 Dao 层
学了 Mybatis 之后,发现用 Mybatis 写 Dao层实在是简便多了,主要是在表的映射这块简单了很多.下面是我实现的使用 Mybatis 实现的简单的操作用户表的 Dao 层. 使用 Myb ...
- default.properties文件
在地址栏访问某个 action 之所以能访问到,只因为在 default.properties 配置文件中有一个键值对,key 为struts.action.extension,值为 action,, ...
- 彻底解决Webpack打包慢的问题
转载 这几天写腾讯实习生 Mini 项目的时候用上了 React 全家桶,当然同时引入了 Webpack 作为打包工具.但是开发过程中遇到一个很棘手的问题就是,React 加上 React-Route ...
- 第73天:jQuery基本动画总结
一.DOM对象跟jQuery对象相互转换 jQuery对象转换成DOM对象: 方式一:$(“#btn”)[0] 方式二:$(“#btn”).get(0) DOM对象转换成jQuery对象: $(doc ...
- angular 延迟更新方法
失去焦点后更新: <input ng-model="name" ng-model-options="{updateOn:'blur'}" />{{n ...
- asp.net下使用Cookie保存登录信息
在网页中登录窗口是最常见的,如果把登录信息存在客户机Cookie中,下次用户登录时,网页先在客户机上查找登录信息,如果成功即可跳过登录步骤直接到主窗口,如登录界面如下: