【BZOJ】2154: Crash的数字表格 莫比乌斯反演
【题意】给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7。
【算法】数论(莫比乌斯反演)
【题解】
$$ans=\sum_{i\leq n}\sum_{j\leq m}\frac{i*j}{gcd(i,j)}$$
$$ans=\sum_{d\leq min(n,m)}1/d\sum_{i\leq n}\sum_{j\leq m}[gcd(i,j)=d]i*j$$
$$ans=\sum_{d\leq min(n,m)}d\sum_{i\leq n/d}\sum_{j\leq m/d}[gcd(i,j)=1]i*j$$
发现后面部分只和n/d,m/d有关,于是封装后分块取值优化。
★$$ans=\sum_{d\leq min(n,m)}d*F(n/d,m/d)$$
$$F(n,m)=\sum_{i\leq n}\sum_{j\leq m}[gcd(i,j)=1]i*j$$
运用e=i*μ反演易得
★$$F(n,m)=\sum_{d\leq min(n,m)}\mu (d)*d^2*sum(n/d,m/d)$$
$$sum(n,m)=\sum_{i\leq n}\sum_{j\leq m}i*j=\sum_{i\leq n}i\sum_{j\leq m}j$$
★$$sum(n,m)=\frac{n(n+1)}{2}*\frac{m(m+1)}{2}$$
(这步由一般分配律)
最后就是两次分块取值优化,√n*√n,复杂度O(n)。
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=,MOD=;
int sum[maxn],n,m,miu[maxn],prime[maxn],tot;
bool mark[maxn];
int M(int x){return x>=MOD?x-MOD:x;}
int SUM(int x,int y){return 1ll*x*(x+)/%MOD*(1ll*y*(y+)/%MOD)%MOD;}
int solve(int x,int y){
int z=min(x,y),ans=,pos=;
for(int i=;i<=z;i=pos+){
pos=min(x/(x/i),y/(y/i));
ans=(ans+1ll*(sum[pos]-sum[i-])*SUM(x/i,y/i)%MOD)%MOD;
}
return ans;
}
int main(){
scanf("%d%d",&n,&m);
int z=min(n,m);
miu[]=sum[]=;
for(int i=;i<=z;i++){
if(!mark[i])miu[prime[++tot]=i]=-;
for(int j=;j<=tot&&i*prime[j]<=z;j++){
mark[i*prime[j]]=;
if(i%prime[j]==)break;
miu[i*prime[j]]=-miu[i];
}
sum[i]=(sum[i-]+1ll*i*i*miu[i]%MOD)%MOD;
}
int pos=,ans=;
for(int i=;i<=z;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(pos+i)*(pos-i+)/%MOD*solve(n/i,m/i))%MOD;
}
printf("%d",(ans+MOD)%MOD);
return ;
}
【BZOJ】2154: Crash的数字表格 莫比乌斯反演的更多相关文章
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- Bzoj 2154: Crash的数字表格(积性函数)
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...
- 【刷题】BZOJ 2154 Crash的数字表格
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- ●BZOJ 2154 Crash的数字表格
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...
随机推荐
- DB2 9.5 数据库分区管理及应用实践
DB2 数据库分区是 DB2 企业版 DPF(Data Partitioning Feature)选件提供的,它主要用来为大规模数据处理.高并发数据访问提供支持.DB2 数据库分区采用 Share-n ...
- TCP系列46—拥塞控制—9、SACK下的快速恢复与Limited transmit
一.概述 1.SACK下的特殊处理过程 SACK下的拥塞控制处理是linux中拥塞控制的实现依据,再次强调一遍RFC6675的重要性,linux中拥塞控制主体框架的实现是与RFC6675一致的,所以如 ...
- 1014C程序语法树
程序:冒泡算法C程序 #include <stdio.h> main() { int i,j,temp; int a[10]; for(i=0;i<10;i++) scanf (&q ...
- 5th 各组作品alpha发布体会
1. 俄罗斯方块 武志远 可以进行游戏,界面很友好,游戏运行也很流畅,并找到两名同学现场体验,游戏完成度很好. 2. 连连看游戏 张金生 可以进行游戏,实现了背景音乐播放等附加功能,界面清晰 ...
- webgl helloworld
之前的webgl 初识1, 初识2 已经介绍了webgl的基本概念,工作原理. 没有理解的自己yy. 现呈上例子一枚 <!DOCTYPE html> <html lang=" ...
- list+map
通常读取数据库表中的一条记录后,可以存储于Hashmap变量中:若要读取多条记录,则依次读取每个记录时,先用Hashmap变量存取,然后将Hashmap加到ArrayList变量中. 注意: 每次读取 ...
- BZOJ4921 互质序列
即求删掉一个子序列的gcd之和.注意到前后缀gcd的变化次数都是log级的,于是暴力枚举前缀gcd和后缀gcd即可. #include<iostream> #include<cstd ...
- Fibsieve`s Fantabulous Birthday LightOJ - 1008(找规律。。)
Description 某只同学在生日宴上得到了一个N×N玻璃棋盘,每个单元格都有灯.每一秒钟棋盘会有一个单元格被点亮然后熄灭.棋盘中的单元格将以图中所示的顺序点亮.每个单元格上标记的是它在第几秒被点 ...
- WildFly8(JBoss)默认web服务器-------Undertow
Java微服务框架之Undertow 一.Undertow简介: Undertow 是红帽公司(RedHat)的开源产品,是 WildFly8(JBoos) 默认的 Web 服务器. 官网API给出一 ...
- 【Visual Installer】如何注册自已的文件类型
一.前言 这几天在做公司软件产品的安装包,产品有一个特定的后缀名为:.isbimqs,需要的功能是双击该后缀名文件后,会有一个启动程序launchRevit.exe去打开Revit,由Revit去打开 ...