Description

二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升、下降的折线,设其数量为f(S)。如下图中,1->2,2->3,3->5,5->6(数字为下图中从左到右的点编号),将折线分为了4部分,每部分连续上升、下降。
 
现给定k,求满足f(S) = k的S集合个数。

Input

第一行两个整数n和k,以下n行每行两个数(xi, yi)表示第i个点的坐标。所有点的坐标值都在[1, 100000]内,且不存在两个点,x坐标值相等或y坐标值相等

Output

输出满足要求的方案总数 mod 100007的结果

Sample Input

5 1
5 5
3 2
4 4
2 3
1 1

Sample Output

19

HINT

对于100%的数据,n <= 50000,0 < k <= 10

基础的$n^2k$的dp很好想,然后你会发现每一个点的转移都是以所以y坐标小于或大于它的所有数为基础

这里可以用树状数组/线段树来优化转移、

代码:

 #include<iostream>
#include<cstdio>
#include<algorithm>
#define M 100010
#define mod 100007
using namespace std;
struct point{int x,y;}a[M];
bool cmp1(point a1,point a2) {return a1.x<a2.x;}
bool cmp2(point a1,point a2) {return a1.y<a2.y;}
int ans,n,m;
int f[M][][];
struct change_query
{
int val[M];
void insert(int loc,int v)
{
for(int i=loc;i<=n;i+=i&(-i))
(val[i]+=v)%=mod;
}
int query(int loc)
{
int ans=;
for(int i=loc;i>;i-=i&(-i)) (ans+=val[i])%=mod;
return ans;
}
int get(int l,int r) {return (query(r)-query(l-)+mod)%mod;}
}T[][];
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d%d",&a[i].x,&a[i].y);
sort(a+,a++n,cmp2);
for(int i=;i<=n;i++) a[i].y=i;
sort(a+,a++n,cmp1);
for(int i=;i<=n;i++)
{
f[i][][]=f[i][][]=;
T[][].insert(a[i].y,f[i][][]);
T[][].insert(a[i].y,f[i][][]);
for(int k=;k<=m;k++)
{
int y=a[i].y;
if(y!=)
{
(f[i][k][]+=T[k][].get(,y-)+T[k-][].get(,y-))%=mod;//f[i][k][1]+=f[j][k][1]+f[j][k-1][0];
T[k][].insert(y,f[i][k][]);
}
if(y!=n)
{
(f[i][k][]+=T[k][].get(y+,n)+T[k-][].get(y+,n))%=mod;//f[i][k][0]+=f[j][k][0]+f[j][k-1][1];
T[k][].insert(y,f[i][k][]);
}
}
}
for(int i=;i<=n;i++) (ans+=f[i][m][]+f[i][m][])%=mod;
printf("%d",ans);
return ;
}

[BZOJ2688]折线统计的更多相关文章

  1. BZOJ3688: 折线统计

    题解: 令f[i][j][0/1]表示前i个数有j段,最后一段是下降/上升的方案数 很容易列出状态转移方程(已按x轴排序) f[i][j][0]=sigma(f[k][j][0]+f[k][j-1][ ...

  2. 折线统计(line)

    折线统计(line) 题目描述 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中, ...

  3. 【ybt金牌导航1-2-3】折线统计

    折线统计 题目链接:ybt金牌导航1-2-3 题目大意 在一个图上有一些点,保证任意两个点的横纵坐标都不相同. 要你选一些集合,按 x 坐标排序依次连接,会构成一些连续上升下降的折线,问你折线数量是 ...

  4. [FJSC2014]折线统计

    [题目描述] 二维平面上有n 个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x 坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1->2 ...

  5. BZOJ3688 折线统计【树状数组优化DP】

    Description 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1-&g ...

  6. 题解 bzoj3688【折线统计】

    考虑 \(dp\) . 首先把所有节点按 \(x\) 从小到大排序是很有必要的. 记 f[i][j][0] 表示满足以第 \(i\) 个节点做折线结尾,选取的点集 \(S\) 满足 \(f(S)=j\ ...

  7. echarts 折线统计笔记

    效果案例图 需要引入的js文件可以直接去官网下载 下面是代码 <!--第一步: 引入 ECharts 文件 --> <script src="static/js/myjs/ ...

  8. 2018.09.28 bzoj3688: 折线统计(dp+树状数组)

    传送门 简单树状数组优化dp. 注意到k很小提示我们搜(d)(d)(d)索(p)(p)(p). 先按第一维排序. 用f[i][j][0/1]f[i][j][0/1]f[i][j][0/1]表示第i个点 ...

  9. BZOJ3688 折线统计 【dp + BIT】

    题目链接 BZOJ3688 题解 将点排序 设\(f[i][j][0|1]\)表示以第\(i\)点结尾,有\(j\)段,最后一段上升或者下降的方案数 以上升为例 \[f[i][j][0] = \sum ...

随机推荐

  1. Python量化常用函数

    # -*- coding: utf-8 -*- # @Author: fangbei # @Date: 2017-08-26 # @Original: price_str = '30.14, 29.5 ...

  2. zipline风险指标计算 (empyrical模块)

    概述 量化中,我们经常会遇到各种量化指标的计算,对于zipline来说,也会对这部分计算进行处理,由于指标计算的通用性比较强,所以,zipline单独封装了 empyrical 这个模块,可以处理类似 ...

  3. zipline目录结构

    下面列出了zipline主要的目录和文件结构和它的说明 ├── ci - 持续集成相关 ├── conda - 生成conda 包相关 ├── docs - 文档 │ ├── notebooks - ...

  4. Yii框架2.0的模块

    模块是个独立的软件单元,也是又控制器,视图,模型组成的,也可以有自己的布局.但他必须属于某个应用下,不能独立存在. 其中模块的控制器,视图和应用的控制器和视图使用基本相同,不作赘述,下面说说模块的使用 ...

  5. django 前端传文件到后台项目目录

    Html端: <form action="/student/upload" method="POST" enctype="multipart/f ...

  6. Incorrect string value: '\xF0\x9F\x98\x84\xF0\x9F 表情插入mysql 报错

    导致报错的问题是 emoji表情是4位 mysql 5.5.3版本以下数据库(utf8格式为3位),不支持.需要更新mysql5.5.3及以上的版本数据库并设置默认或者表或者字段的格式为 utf8mb ...

  7. Django中对静态文件的支持(转)

    英文原文:[http://agiliq.com/blog/2013/03/serving-static-files-in-django/] 译文:[http://segmentfault.com/a/ ...

  8. 转:docker的核心技术深度剖析

    一.docker是什么 Docker的英文本意是码头工人,也就是搬运工,这种搬运工搬运的是集装箱(Container),集装箱里面装的可不是商品货物,而是任意类型的App,Docker把App(叫Pa ...

  9. Python并行编程(五):线程同步之信号量

    1.基本概念 信号量是由操作系统管理的一种抽象数据类型,用于在多线程中同步对共享资源的使用.本质上说,信号量是一个内部数据,用于标明当前的共享资源可以有多少并发读取. 同样在threading中,信号 ...

  10. Loki之ThreadPool

    Loki中的ThreadPool目的主要是对创建出来的线程进行复用. ThreadPool在Test而非Loki目录下,因此并非是标准Loki的组件之一,不过我们可以对其修改定制, 下面是对其源码的大 ...