传送门

Description

在一个笛卡尔坐标系中,定义三种操作:

\(add(x,y)\),将点\((x,y)\)标记在坐标系上

\(find(x,y)\),查询点\((x,y)\)严格右上方中,横坐标最小的点。如果有多个,输出其中纵坐标最小的。没有则输出-1

\(remove(x,y)\),将点\((x,y)\)取消标记

Input

第一行是操作个数\(n\)。

下面\(n\)行,每行对应一个操作。

Output

每个查询操作输出一个答案。

Hint

\(n~\leq~10^5,|x|,|y|~\leq~10^9\)。数据保证合法。

Solution

\(x,y\)这么大,先给他离散化再说。

考虑一个笛卡尔坐标系上,对每个横坐标\(x\)任取一个\(y\)组成点\((x,y)\),是与一个数列\(A\)有一一对应关系的。即,点\((x,y)\)对应序列\(A_x=y\)。

考虑对于一次查询,一列能做为答案的必要条件是这一列上\(y\)轴最大的点大于被查询的点的纵坐标。于是就想到将每个\(x\)对应的最大的\(y\)写入序列。于是每次查询时在序列上查询大于\(x\)的后缀上第一个大于\(y\)的位置的下标。这个显然可以用线段树搞定。考虑剩下的\(y\)怎么记录。使用线段树可以查询出应该被选择的横坐标。则纵坐标就是这一列上大于\(y\)的第一个数。于是对于每一列开一个\(set\),维护这一列上所有的\(y\),查询时直接upper_bound即可。

考虑线段树的写法。对于线段树的一个区间,维护这段区间中最大值的下标是多少。查询时,先递归查询左区间,如果左区间不合法则递归查询右区间。一个区间不合法当且仅当他与被查询的区间无交或他的最大值小于被查询的值\(k\)。

考虑这么做的复杂度:因为一个区间会被线段树划分成\(O(log(len))\)个线段。发现这些遍历这些线段是\(O(log)\)的,于是一次操作的复杂度是\(O(log)\)的。总复杂度\(O(nlogn)\)

Code

#include<set>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
} namespace IO {
char buf[120];
} template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {x=-x,putchar('-');}
rg int top=0;
do {IO::buf[++top]=x%10+'0';} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template <typename T>
inline void mswap(T &_a,T &_b) {
T _temp=_a;_a=_b;_b=_temp;
} const int maxn = 200010;
const int maxt = 1600010; struct M {
int opt,x,y;
};
M MU[maxn]; int n,tcnt,num;
int temp[maxt],CU[maxt];
std::set<int>ss[maxt]; struct Tree {
int v;
inline void update(const Tree &_ls,const Tree _rs) {
if(!(~(_ls.v))) this->v = _rs.v;
else if(!(~(_rs.v))) this->v = _ls.v;
else {
if(CU[_ls.v] >= CU[_rs.v]) this->v=_ls.v;
else this->v=_rs.v;
}
}
};
Tree tree[maxt]; void init_hash();
void change(ci,ci,ci,ci);
int ask(ci,ci,ci,ci,ci); int main() {
qr(n);
for(rg int i=1;i<=n;++i) {
M &now=MU[i];
rg char ch=getchar();
while((ch > 'z') || (ch < 'a')) ch=getchar();
if(ch == 'a') now.opt=1;
else if(ch == 'r') now.opt=3;
else now.opt=2;
qr(now.x);qr(now.y);
temp[++tcnt]=now.x;temp[++tcnt]=now.y;
}
init_hash();
memset(tree,-1,sizeof tree);
for(rg int i=1;i<=n;++i) {
M &now=MU[i];
switch(now.opt) {
case 1: {
ss[now.x].insert(now.y);
if(now.y == *(--ss[now.x].end())) {CU[now.x]=now.y;change(1,num,1,MU[i].x);}
break;
}
case 2: {
int k=ask(1,num,1,now.x+1,now.y);
if(!(~k)) {puts("-1");break;}
qw(temp[k],' ',true);
std::set<int>::iterator zay = ss[k].upper_bound(now.y);
qw(temp[*zay],'\n',true);
break;
}
case 3: {
if(now.y == *(--ss[now.x].end())) {
ss[now.x].erase(now.y);
if(ss[now.x].empty()) CU[now.x]=0;
else CU[now.x]=*(--ss[now.x].end());
change(1,num,1,MU[i].x);
}
else ss[now.x].erase(now.y);
break;
}
}
}
return 0;
} void init_hash() {
std::sort(temp+1,temp+1+tcnt);s
int *ed=std::unique(temp+1,temp+1+tcnt);
num=ed-temp-1;
for(rg int i=1;i<=n;++i) {
MU[i].x=std::lower_bound(temp+1,ed,MU[i].x)-temp;
MU[i].y=std::lower_bound(temp+1,ed,MU[i].y)-temp;
}
} void change(ci l,ci r,ci p,ci aim) {
if(l > r) return;
if((l > aim) || (r < aim)) return;
if(l == r) {tree[p].v=l;return;}
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
change(l,mid,dp,aim);change(mid+1,r,ddp,aim);
tree[p].update(tree[dp],tree[ddp]);
} int ask(ci l,ci r,ci p,ci aim,ci v) {
if(l > r) return -1;
if(r < aim) return -1;
if(!(~(tree[p].v))) return -1;
if(CU[tree[p].v] <= v) return -1;
if(l == r) return tree[p].v;
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
if(mid >= r) return ask(l,mid,dp,aim,v);
else if(mid < l) return ask(mid+1,r,ddp,aim,v);
else {
int _ans;
if(~(_ans=ask(l,mid,dp,aim,v))) return _ans;
else return ask(mid+1,r,ddp,aim,v);
}
}

Solution

一个笛卡尔坐标系中对于每一个横坐标\(x\)选择一个纵坐标\(y\)后,可以将之一一对应到一个下标为\(x\),值为\(y\)的线段上。利用这个性质可以将坐标问题改为序列修改问题使用数据结构处理。

【线段树】【CF19D】 Points的更多相关文章

  1. UVA10869 - Brownie Points II(线段树)

    UVA10869 - Brownie Points II(线段树) 题目链接 题目大意:平面上有n个点,Stan和Ollie在玩游戏,游戏规则是:Stan先画一条竖直的线作为y轴,条件是必需要经过这个 ...

  2. Codeforces 1140F Extending Set of Points 线段树 + 按秩合并并查集 (看题解)

    Extending Set of Points 我们能发现, 如果把x轴y轴看成点, 那么答案就是在各个连通块里面的x轴的个数乘以y轴的个数之和. 然后就变成了一个并查集的问题, 但是这个题目里面有撤 ...

  3. CodeForces 19D Points (线段树+set)

    D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  4. [hdu4347]The Closest M Points(线段树形式kd-tree)

    解题关键:kdtree模板题,距离某点最近的m个点. #include<cstdio> #include<cstring> #include<algorithm> ...

  5. CodeForces19D:Points(线段树+set(动态查找每个点右上方的点))

    Pete and Bob invented a new interesting game. Bob takes a sheet of paper and locates a Cartesian coo ...

  6. Codeforces Beta Round #19D(Points)线段树

    D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  7. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  8. CodeForces 19D Points(线段树+map)

    开始想不通,后来看网上说是set,就有一个想法是对每个x建一个set...然后又想直接建立两重的set就好,最后发现不行,自己想多了...  题意是给你三种操作:add (x y) 平面添加(x y) ...

  9. CF 19D - Points 线段树套平衡树

    题目在这: 给出三种操作: 1.增加点(x,y) 2.删除点(x,y) 3.询问在点(x,y)右上方的点,如果有相同,输出最左边的,如果还有相同,输出最低的那个点 分析: 线段树套平衡树. 我们先离散 ...

随机推荐

  1. sql server 批量备份数据库

    很多时候,我们都需要将数据库进行备份,当服务器上数据库较多时,不可能一个数据库创建一个定时任务进行备份,这时,就需要进行批量的数据库备份操作,好了,废话不多说,具体实现语句如下: --开启文件夹权限 ...

  2. Java EE平台介绍(译)

    Java EE平台介绍 2.1 企业应用总览 这一部分将对企业应用及其设计和开发进行简单介绍. 就像之前说的,Java EE 平台是为了帮助开发者开发大规模.多层次.可伸缩.服务可靠.网络安全的应用而 ...

  3. 前端之JavaScript(一)

    一.JavaScript前世今生 它最初由Netscape的Brendan Eich设计.JavaScript是甲骨文公司的注册商标.Ecma国际以JavaScript为基础制定了ECMAScript ...

  4. Halcon如何保存仿射变换矩阵

    这里我们通过序列化来实现的,如下图,写到硬盘的HomMat2D_1内容和从硬盘里HomMat2D_2读出的内容一致,源代码在图片下方. Halcon源代码: hom_mat2d_identity (H ...

  5. 如何在Ubuntu 18.04上安装Go

    如何在Ubuntu 18.04上安装Go 谢鸢发表于云计算教程系列订阅98 介绍 课程准备 第1步 - 安装Go 第2步 - 设置Go路径 第3步 - 测试您的安装 结论 介绍 Go是Google开发 ...

  6. [redis] linux下安装篇(1)

    一.redis是什么redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合)和zset(有 ...

  7. Java clone() 浅拷贝 深拷贝

    假如说你想复制一个简单变量.很简单: int apples = 5; int pears = apples; 不仅仅是int类型,其它七种原始数据类型(boolean,char,byte,short, ...

  8. Scala快速入门-函数组合

    compose&andThen 两个函数组装为一个函数,compose和andThen相反 def f(test: String):String = { "f(" + te ...

  9. Communications link failure--分析之(JDBC的多种超时情况)

    本文是针对特定的情景下的特定错误,不是所有Communications link failure错误都是这个引起的,重要的区分特点是:程序是不是在卡主后两个小时(服务器的设置)后程序才感知到,才抛出了 ...

  10. 守护线程以及要使用时注意的一点(Daemon Thread)

    在Java中有两类线程:User Thread(用户线程).Daemon Thread(守护线程) Daemon的作用是为其他线程的运行提供便利服务,比如垃圾回收线程就是一个很称职的守护者.User和 ...