【线段树】【CF19D】 Points
Description
在一个笛卡尔坐标系中,定义三种操作:
\(add(x,y)\),将点\((x,y)\)标记在坐标系上
\(find(x,y)\),查询点\((x,y)\)严格右上方中,横坐标最小的点。如果有多个,输出其中纵坐标最小的。没有则输出-1
\(remove(x,y)\),将点\((x,y)\)取消标记
Input
第一行是操作个数\(n\)。
下面\(n\)行,每行对应一个操作。
Output
每个查询操作输出一个答案。
Hint
\(n~\leq~10^5,|x|,|y|~\leq~10^9\)。数据保证合法。
Solution
\(x,y\)这么大,先给他离散化再说。
考虑一个笛卡尔坐标系上,对每个横坐标\(x\)任取一个\(y\)组成点\((x,y)\),是与一个数列\(A\)有一一对应关系的。即,点\((x,y)\)对应序列\(A_x=y\)。
考虑对于一次查询,一列能做为答案的必要条件是这一列上\(y\)轴最大的点大于被查询的点的纵坐标。于是就想到将每个\(x\)对应的最大的\(y\)写入序列。于是每次查询时在序列上查询大于\(x\)的后缀上第一个大于\(y\)的位置的下标。这个显然可以用线段树搞定。考虑剩下的\(y\)怎么记录。使用线段树可以查询出应该被选择的横坐标。则纵坐标就是这一列上大于\(y\)的第一个数。于是对于每一列开一个\(set\),维护这一列上所有的\(y\),查询时直接upper_bound即可。
考虑线段树的写法。对于线段树的一个区间,维护这段区间中最大值的下标是多少。查询时,先递归查询左区间,如果左区间不合法则递归查询右区间。一个区间不合法当且仅当他与被查询的区间无交或他的最大值小于被查询的值\(k\)。
考虑这么做的复杂度:因为一个区间会被线段树划分成\(O(log(len))\)个线段。发现这些遍历这些线段是\(O(log)\)的,于是一次操作的复杂度是\(O(log)\)的。总复杂度\(O(nlogn)\)
Code
#include<set>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rg register
#define ci const int
#define cl const long long
typedef long long int ll;
template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
}
namespace IO {
char buf[120];
}
template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {x=-x,putchar('-');}
rg int top=0;
do {IO::buf[++top]=x%10+'0';} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
}
template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;}
template <typename T>
inline void mswap(T &_a,T &_b) {
T _temp=_a;_a=_b;_b=_temp;
}
const int maxn = 200010;
const int maxt = 1600010;
struct M {
int opt,x,y;
};
M MU[maxn];
int n,tcnt,num;
int temp[maxt],CU[maxt];
std::set<int>ss[maxt];
struct Tree {
int v;
inline void update(const Tree &_ls,const Tree _rs) {
if(!(~(_ls.v))) this->v = _rs.v;
else if(!(~(_rs.v))) this->v = _ls.v;
else {
if(CU[_ls.v] >= CU[_rs.v]) this->v=_ls.v;
else this->v=_rs.v;
}
}
};
Tree tree[maxt];
void init_hash();
void change(ci,ci,ci,ci);
int ask(ci,ci,ci,ci,ci);
int main() {
qr(n);
for(rg int i=1;i<=n;++i) {
M &now=MU[i];
rg char ch=getchar();
while((ch > 'z') || (ch < 'a')) ch=getchar();
if(ch == 'a') now.opt=1;
else if(ch == 'r') now.opt=3;
else now.opt=2;
qr(now.x);qr(now.y);
temp[++tcnt]=now.x;temp[++tcnt]=now.y;
}
init_hash();
memset(tree,-1,sizeof tree);
for(rg int i=1;i<=n;++i) {
M &now=MU[i];
switch(now.opt) {
case 1: {
ss[now.x].insert(now.y);
if(now.y == *(--ss[now.x].end())) {CU[now.x]=now.y;change(1,num,1,MU[i].x);}
break;
}
case 2: {
int k=ask(1,num,1,now.x+1,now.y);
if(!(~k)) {puts("-1");break;}
qw(temp[k],' ',true);
std::set<int>::iterator zay = ss[k].upper_bound(now.y);
qw(temp[*zay],'\n',true);
break;
}
case 3: {
if(now.y == *(--ss[now.x].end())) {
ss[now.x].erase(now.y);
if(ss[now.x].empty()) CU[now.x]=0;
else CU[now.x]=*(--ss[now.x].end());
change(1,num,1,MU[i].x);
}
else ss[now.x].erase(now.y);
break;
}
}
}
return 0;
}
void init_hash() {
std::sort(temp+1,temp+1+tcnt);s
int *ed=std::unique(temp+1,temp+1+tcnt);
num=ed-temp-1;
for(rg int i=1;i<=n;++i) {
MU[i].x=std::lower_bound(temp+1,ed,MU[i].x)-temp;
MU[i].y=std::lower_bound(temp+1,ed,MU[i].y)-temp;
}
}
void change(ci l,ci r,ci p,ci aim) {
if(l > r) return;
if((l > aim) || (r < aim)) return;
if(l == r) {tree[p].v=l;return;}
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
change(l,mid,dp,aim);change(mid+1,r,ddp,aim);
tree[p].update(tree[dp],tree[ddp]);
}
int ask(ci l,ci r,ci p,ci aim,ci v) {
if(l > r) return -1;
if(r < aim) return -1;
if(!(~(tree[p].v))) return -1;
if(CU[tree[p].v] <= v) return -1;
if(l == r) return tree[p].v;
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
if(mid >= r) return ask(l,mid,dp,aim,v);
else if(mid < l) return ask(mid+1,r,ddp,aim,v);
else {
int _ans;
if(~(_ans=ask(l,mid,dp,aim,v))) return _ans;
else return ask(mid+1,r,ddp,aim,v);
}
}
Solution
一个笛卡尔坐标系中对于每一个横坐标\(x\)选择一个纵坐标\(y\)后,可以将之一一对应到一个下标为\(x\),值为\(y\)的线段上。利用这个性质可以将坐标问题改为序列修改问题使用数据结构处理。
【线段树】【CF19D】 Points的更多相关文章
- UVA10869 - Brownie Points II(线段树)
UVA10869 - Brownie Points II(线段树) 题目链接 题目大意:平面上有n个点,Stan和Ollie在玩游戏,游戏规则是:Stan先画一条竖直的线作为y轴,条件是必需要经过这个 ...
- Codeforces 1140F Extending Set of Points 线段树 + 按秩合并并查集 (看题解)
Extending Set of Points 我们能发现, 如果把x轴y轴看成点, 那么答案就是在各个连通块里面的x轴的个数乘以y轴的个数之和. 然后就变成了一个并查集的问题, 但是这个题目里面有撤 ...
- CodeForces 19D Points (线段树+set)
D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- [hdu4347]The Closest M Points(线段树形式kd-tree)
解题关键:kdtree模板题,距离某点最近的m个点. #include<cstdio> #include<cstring> #include<algorithm> ...
- CodeForces19D:Points(线段树+set(动态查找每个点右上方的点))
Pete and Bob invented a new interesting game. Bob takes a sheet of paper and locates a Cartesian coo ...
- Codeforces Beta Round #19D(Points)线段树
D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- 2019牛客多校第一场 I Points Division(动态规划+线段树)
2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...
- CodeForces 19D Points(线段树+map)
开始想不通,后来看网上说是set,就有一个想法是对每个x建一个set...然后又想直接建立两重的set就好,最后发现不行,自己想多了... 题意是给你三种操作:add (x y) 平面添加(x y) ...
- CF 19D - Points 线段树套平衡树
题目在这: 给出三种操作: 1.增加点(x,y) 2.删除点(x,y) 3.询问在点(x,y)右上方的点,如果有相同,输出最左边的,如果还有相同,输出最低的那个点 分析: 线段树套平衡树. 我们先离散 ...
随机推荐
- 【数据结构系列】线段树(Segment Tree)
一.线段树的定义 线段树,又名区间树,是一种二叉搜索树. 那么问题来了,啥是二叉搜索树呢? 对于一棵二叉树,若满足: ①它的左子树不空,则左子树上所有结点的值均小于它的根结点的值 ②若它的右子树不空, ...
- Python 3 利用 Dlib 实现摄像头人脸检测特征点标定
0. 引言 利用 Python 开发,借助 Dlib 库捕获摄像头中的人脸,进行实时人脸 68 个特征点标定: 支持多张人脸: 有截图功能: 图 1 工程效果示例( gif ) 图 2 工程效果示例( ...
- Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...
- 《Linux内核分析》学习总结与学习心得
一.目录列表 第一周:计算机是如何工作的? http://www.cnblogs.com/dvew/p/5224866.html 第二周:操作系统是如何工作的? http://www.cnblogs. ...
- maven项目org.springframework.web.context.ContextLoaderListener的异常和tomcat zipexception的异常
使用到spring的maven web项目,在运行servers时,报错找不到org.springframework.web.context.ContextLoaderListener,web.xml ...
- 0429团队项目-Scrum团队成立
Scrum团队成立 团队名称:开拓者 团队目标:努力让每一个小伙伴在学会走路的基础上学会跑. 团队口号:我们要的只是这片天而已. 团队照:正面照+背影照(那就是为什么组名叫开拓者) 5.2 角色分配 ...
- 基于 IBM WAS ND v6.1 搭建稳定高效的集群环境
如今的电子商务及电子政务应用系统的发展已经到了一个新的阶段,应用系统的成熟度和可用性都达到了更高的水准.因此庞大的部署规模和海量的用户访问成为目前大型电子商务及电子政务应用系统的显著特征.在这样的情况 ...
- BOM对象属性定时器的调用
使count中的内容,自动切换 <body> <h1 id="count"></h1> </body> //获取count var ...
- Qt程序打包,自动拷贝依赖文件
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:Qt程序打包,自动拷贝依赖文件 本文地址:http://techieliang.com ...
- 【BioCode】将多个蛋白质序列分成单个的txt文档
代码说明: fasta格式的蛋白质序列,一个txt里面有很多蛋白质序列,计算ss.pssm或disorder score时候都需要单条计算,需要分开. 分割前: 分割后: show you the c ...