传送门

Description

在一个笛卡尔坐标系中,定义三种操作:

\(add(x,y)\),将点\((x,y)\)标记在坐标系上

\(find(x,y)\),查询点\((x,y)\)严格右上方中,横坐标最小的点。如果有多个,输出其中纵坐标最小的。没有则输出-1

\(remove(x,y)\),将点\((x,y)\)取消标记

Input

第一行是操作个数\(n\)。

下面\(n\)行,每行对应一个操作。

Output

每个查询操作输出一个答案。

Hint

\(n~\leq~10^5,|x|,|y|~\leq~10^9\)。数据保证合法。

Solution

\(x,y\)这么大,先给他离散化再说。

考虑一个笛卡尔坐标系上,对每个横坐标\(x\)任取一个\(y\)组成点\((x,y)\),是与一个数列\(A\)有一一对应关系的。即,点\((x,y)\)对应序列\(A_x=y\)。

考虑对于一次查询,一列能做为答案的必要条件是这一列上\(y\)轴最大的点大于被查询的点的纵坐标。于是就想到将每个\(x\)对应的最大的\(y\)写入序列。于是每次查询时在序列上查询大于\(x\)的后缀上第一个大于\(y\)的位置的下标。这个显然可以用线段树搞定。考虑剩下的\(y\)怎么记录。使用线段树可以查询出应该被选择的横坐标。则纵坐标就是这一列上大于\(y\)的第一个数。于是对于每一列开一个\(set\),维护这一列上所有的\(y\),查询时直接upper_bound即可。

考虑线段树的写法。对于线段树的一个区间,维护这段区间中最大值的下标是多少。查询时,先递归查询左区间,如果左区间不合法则递归查询右区间。一个区间不合法当且仅当他与被查询的区间无交或他的最大值小于被查询的值\(k\)。

考虑这么做的复杂度:因为一个区间会被线段树划分成\(O(log(len))\)个线段。发现这些遍历这些线段是\(O(log)\)的,于是一次操作的复杂度是\(O(log)\)的。总复杂度\(O(nlogn)\)

Code

#include<set>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
} namespace IO {
char buf[120];
} template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {x=-x,putchar('-');}
rg int top=0;
do {IO::buf[++top]=x%10+'0';} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template <typename T>
inline void mswap(T &_a,T &_b) {
T _temp=_a;_a=_b;_b=_temp;
} const int maxn = 200010;
const int maxt = 1600010; struct M {
int opt,x,y;
};
M MU[maxn]; int n,tcnt,num;
int temp[maxt],CU[maxt];
std::set<int>ss[maxt]; struct Tree {
int v;
inline void update(const Tree &_ls,const Tree _rs) {
if(!(~(_ls.v))) this->v = _rs.v;
else if(!(~(_rs.v))) this->v = _ls.v;
else {
if(CU[_ls.v] >= CU[_rs.v]) this->v=_ls.v;
else this->v=_rs.v;
}
}
};
Tree tree[maxt]; void init_hash();
void change(ci,ci,ci,ci);
int ask(ci,ci,ci,ci,ci); int main() {
qr(n);
for(rg int i=1;i<=n;++i) {
M &now=MU[i];
rg char ch=getchar();
while((ch > 'z') || (ch < 'a')) ch=getchar();
if(ch == 'a') now.opt=1;
else if(ch == 'r') now.opt=3;
else now.opt=2;
qr(now.x);qr(now.y);
temp[++tcnt]=now.x;temp[++tcnt]=now.y;
}
init_hash();
memset(tree,-1,sizeof tree);
for(rg int i=1;i<=n;++i) {
M &now=MU[i];
switch(now.opt) {
case 1: {
ss[now.x].insert(now.y);
if(now.y == *(--ss[now.x].end())) {CU[now.x]=now.y;change(1,num,1,MU[i].x);}
break;
}
case 2: {
int k=ask(1,num,1,now.x+1,now.y);
if(!(~k)) {puts("-1");break;}
qw(temp[k],' ',true);
std::set<int>::iterator zay = ss[k].upper_bound(now.y);
qw(temp[*zay],'\n',true);
break;
}
case 3: {
if(now.y == *(--ss[now.x].end())) {
ss[now.x].erase(now.y);
if(ss[now.x].empty()) CU[now.x]=0;
else CU[now.x]=*(--ss[now.x].end());
change(1,num,1,MU[i].x);
}
else ss[now.x].erase(now.y);
break;
}
}
}
return 0;
} void init_hash() {
std::sort(temp+1,temp+1+tcnt);s
int *ed=std::unique(temp+1,temp+1+tcnt);
num=ed-temp-1;
for(rg int i=1;i<=n;++i) {
MU[i].x=std::lower_bound(temp+1,ed,MU[i].x)-temp;
MU[i].y=std::lower_bound(temp+1,ed,MU[i].y)-temp;
}
} void change(ci l,ci r,ci p,ci aim) {
if(l > r) return;
if((l > aim) || (r < aim)) return;
if(l == r) {tree[p].v=l;return;}
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
change(l,mid,dp,aim);change(mid+1,r,ddp,aim);
tree[p].update(tree[dp],tree[ddp]);
} int ask(ci l,ci r,ci p,ci aim,ci v) {
if(l > r) return -1;
if(r < aim) return -1;
if(!(~(tree[p].v))) return -1;
if(CU[tree[p].v] <= v) return -1;
if(l == r) return tree[p].v;
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
if(mid >= r) return ask(l,mid,dp,aim,v);
else if(mid < l) return ask(mid+1,r,ddp,aim,v);
else {
int _ans;
if(~(_ans=ask(l,mid,dp,aim,v))) return _ans;
else return ask(mid+1,r,ddp,aim,v);
}
}

Solution

一个笛卡尔坐标系中对于每一个横坐标\(x\)选择一个纵坐标\(y\)后,可以将之一一对应到一个下标为\(x\),值为\(y\)的线段上。利用这个性质可以将坐标问题改为序列修改问题使用数据结构处理。

【线段树】【CF19D】 Points的更多相关文章

  1. UVA10869 - Brownie Points II(线段树)

    UVA10869 - Brownie Points II(线段树) 题目链接 题目大意:平面上有n个点,Stan和Ollie在玩游戏,游戏规则是:Stan先画一条竖直的线作为y轴,条件是必需要经过这个 ...

  2. Codeforces 1140F Extending Set of Points 线段树 + 按秩合并并查集 (看题解)

    Extending Set of Points 我们能发现, 如果把x轴y轴看成点, 那么答案就是在各个连通块里面的x轴的个数乘以y轴的个数之和. 然后就变成了一个并查集的问题, 但是这个题目里面有撤 ...

  3. CodeForces 19D Points (线段树+set)

    D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  4. [hdu4347]The Closest M Points(线段树形式kd-tree)

    解题关键:kdtree模板题,距离某点最近的m个点. #include<cstdio> #include<cstring> #include<algorithm> ...

  5. CodeForces19D:Points(线段树+set(动态查找每个点右上方的点))

    Pete and Bob invented a new interesting game. Bob takes a sheet of paper and locates a Cartesian coo ...

  6. Codeforces Beta Round #19D(Points)线段树

    D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  7. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  8. CodeForces 19D Points(线段树+map)

    开始想不通,后来看网上说是set,就有一个想法是对每个x建一个set...然后又想直接建立两重的set就好,最后发现不行,自己想多了...  题意是给你三种操作:add (x y) 平面添加(x y) ...

  9. CF 19D - Points 线段树套平衡树

    题目在这: 给出三种操作: 1.增加点(x,y) 2.删除点(x,y) 3.询问在点(x,y)右上方的点,如果有相同,输出最左边的,如果还有相同,输出最低的那个点 分析: 线段树套平衡树. 我们先离散 ...

随机推荐

  1. 2019展望计划(Lamica 2019-Year Plan):

    1,家人身体健康.2,好好上课,考试顺利,不要挂科.3,PETS3 9月份 杭州 一定要过.4,PETS3通过后,进军日语N3-N2.5,在杭州找一份合适的工作(底线6K).6,在杭州交到新朋友.7, ...

  2. 关于XML文档操作类

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.X ...

  3. Linux学习—导航文件系统

    与windows相同,Linux操作系统也是以被称之为分层目录结构的方式来组织文件的.这意味着文件是以树形结构的目录中进行组织的,该树形结构目录可能包含文件和其他目录.文件系统的第一个目录叫做根目录, ...

  4. 冲刺ing-2

    第二次Scrum冲刺 队员完成的任务 队员 完成任务 吴伟华 分配任务 蔺皓雯 编写博客,查阅资料 蔡晨旸 查阅资料 曾茜 暂无 鲁婧楠 暂无 杨池宇 暂无 成员遇到的问题 队员 问题 吴伟华 暂无 ...

  5. DPDK报文分类与访问控制

    原创翻译,转载请注明出处. dpdk提供了一个访问控制库,提供了基于一系列分类规则对接收到的报文进行分类的能力.ACL库用来在一系列规则上执行N元组查找,可以实现多个分类和对每个分类查找最佳匹配(最高 ...

  6. spring表单—乱码解决方案

    1.POST方式提交 A.jsp页面POST方式提交表单 B.web.xml配置过滤器 <!-- spring过滤器解决乱码问题 --> <filter> <filter ...

  7. C语言文法阅读与理解

    <翻译单元>--><外部声明>--><函数定义>|<申报> <函数定义>--><声明说明符>-->< ...

  8. "firstday"-软件工程

    阅读以下文章 http://www.thea.cn/news/terminal/9/9389.html    http://www.shzhidao.cn/system/2015/09/22/0102 ...

  9. selenium webdriver 表格的定位方法练习

    selenium webdriver 表格的定位方法 html 数据准备 <html> <body> <div id="div1"> <i ...

  10. [CB] Windows10为什么质量变差 bug越来越多

    在 Windows 10 发布之后,微软转向了软件即服务模式,每半年释出一个新版本,通过增加更新频率将新的特性不断推送给用户. 在以前,微软产品发布周期是两到三年,其开发流程分成多个阶段:设计和策划. ...