Spark RDD概念学习系列之RDD的5大特点(五)
RDD的5大特点
1)有一个分片列表,就是能被切分,和Hadoop一样,能够切分的数据才能并行计算。
一组分片(partition),即数据集的基本组成单位,对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。每个分配的存储是由BlockManager实现的,每个分区都会被逻辑映射成BlockManager的一个Block,而这个Block会被一个Task负责计算。
2)由一个函数计算每一个分片,这里指的是下面会提到的compute函数。
Spark中的RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。
3)对其他RDD的依赖列表,依赖还具体分为宽依赖和窄依赖,但并不是所有的RDD都有依赖。
RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。
4)可选:key-value型的RDD是根据哈希来分区的,类似于mapreduce当中的paritioner接口,控制Key分到哪个reduce。
一个partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个基于范围的RangePartitioner。只有对于key-value的RDD,才会有Partitioner,非key-value的RDD的Partitioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。
5)可选:每一分片的优先计算位置,比如HDFS的block的所在位置应该是优先计算的位置。
一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。
- 它是在集群节点上的不可变的、已分区的集合对象。
- 通过并行转换的方式来创建如(map, filter, join, etc)。
- 失败自动重建。
- 可以控制存储级别(内存、磁盘等)来进行重用。
- 必须是可序列化的。
- 是静态类型的。
进一步,说:
worker里有很多Excutor,真正完成计算的是Excutor,Excutor计算都是在内存进行计算,
Excutor里面有partitioner,partitioner里面的数据如果内存足够大的话放到内存中,它是一点一点读的。
RDD是分布式数据集,所说RDD就是这个。
RDD有5个特点:
1.a list of partiotioner有很多个partiotioner(这里有3个partiotioner),可以明确的说,一个分区在一台机器上,一个分区其实就是放在一台机器的内存上,一台机器上可以有多个分区。
2.a function for partiotioner一个函数作用在一个分区上。比如说一个分区有1,2,3 在rdd1.map(_*10),把RDD里面的每一个元素取出来乘以10,每个分片都应用这个map的函数。
3.RDD之间有一系列的依赖rdd1.map(_*10).flatMap(..).map(..).reduceByKey(...),构建成为DAG,这个DAG会构造成很多个阶段,这些阶段叫做stage,RDDstage之间会有依赖关系,后面根据前面的依赖关系来构建,如果前面的数据丢了,它会记住前面的依赖,从前面进行重新恢复。每一个算子都会产生新的RDD。textFile 与flatMap会产生两个RDD.
4.分区器hash & Integer.Max % partiotioner 决定数据到哪个分区里面,可选,这个RDD是key-value 的时候才能有
5.最佳位置。数据在哪台机器上,任务就启在哪个机器上,数据在本地上,不用走网络。不过数据进行最后汇总的时候就要走网络。(hdfs file的block块)
RDD有5个特点:
1、RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集。
2、RDD在抽象上来说是一种元素集合,包含了数据。它是被分区的,分为多个分区,每个分区分布在集群中的不同节点上,从而让RDD中的数据可以被并行操作。(分布式数据集)
3、RDD通常通过Hadoop上的文件,即HDFS文件或者Hive表,来进行创建;有时也可以通过应用程序中的集合来创建。
4、RDD最重要的特性就是,提供了容错性,可以自动从节点失败中恢复过来。即如果某个节点上的RDD partition,因为节点故障,导致数据丢了,那么RDD会自动通过自己的数据来源重新计算该partition。这一切对使用者是透明的。
5、RDD的数据默认情况下存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘。(弹性)
推荐,阅读源码来进一步学习。可见,知识来自于源码

* Internally, each RDD is characterized by five main properties:** - A list of partitions* - A function for computing each split* - A list of dependencies on other RDDs* - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)* - Optionally, a list of preferred locations to compute each split on (e.g. block locations for* an HDFS file)
Spark RDD概念学习系列之RDD的5大特点(五)的更多相关文章
- Spark RDD概念学习系列之RDD的转换(十)
RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的 ...
- Spark RDD概念学习系列之RDD的checkpoint(九)
RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点? 答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容 ...
- Spark RDD概念学习系列之RDD的缓存(八)
RDD的缓存 RDD的缓存和RDD的checkpoint的区别 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon) ...
- Spark RDD概念学习系列之RDD的操作(七)
RDD的操作 RDD支持两种操作:转换和动作. 1)转换,即从现有的数据集创建一个新的数据集. 2)动作,即在数据集上进行计算后,返回一个值给Driver程序. 例如,map就是一种转换,它将数据集每 ...
- Spark RDD概念学习系列之RDD是什么?(四)
RDD是什么? 通俗地理解,RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的.详细见 Spark的数据存储 Spark的核心数据模型是RDD,但RDD是个抽象类 ...
- Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)
RDD的依赖关系? RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...
- Spark RDD概念学习系列之RDD的缺点(二)
RDD的缺点? RDD是Spark最基本也是最根本的数据抽象,它具备像MapReduce等数据流模型的容错性,并且允许开发人员在大型集群上执行基于内存的计算. 为了有效地实现容错,(详细见ht ...
- Spark RDD概念学习系列之rdd持久化、广播、累加器(十八)
1.rdd持久化 2.广播 3.累加器 1.rdd持久化 通过spark-shell,可以快速的验证我们的想法和操作! 启动hdfs集群 spark@SparkSingleNode:/usr/loca ...
- Spark RDD概念学习系列之rdd的依赖关系彻底解密(十九)
本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Tra ...
- Spark RDD概念学习系列之RDD的创建(六)
RDD的创建 两种方式来创建RDD: 1)由一个已经存在的Scala集合创建 2)由外部存储系统的数据集创建,包括本地文件系统,还有所有Hadoop支持的数据集,比如HDFS.Cassandra.H ...
随机推荐
- Jquery-json
第三方插件: jquery.json-2.4.js Jquery-json 是 jQuery 的一个插件,可轻松实现对象和 JSON 字符串之间的转换.可序列化 JavaScript 对象.数值.字符 ...
- Redis Cluster架构和设计机制简单介绍
之前另一篇文章也介绍了 Redis Cluster (link,在文章的后半部分) 今天看到这一篇,简单说一下(http://hot66hot.iteye.com/blog/2050676) 作者的目 ...
- rsync常用命令及格式
rsync在同步文件夹内容这个工作上应用非常广泛,但是rsync本身命令还是比较复杂,本文总结一下: rsync = remote sync的简称 ,它 被用于在linux/unix系统中执行备份操作 ...
- LA 4794 Sharing Chocolate
大白书中的题感觉一般都比较难,能理解书上代码就已经很不错了 按照经验,一般数据较小的题目,都有可能是用状态压缩来解决的 题意:问一个面积为x×y的巧克力,能否切若干刀,将其切成n块面积为A1,A2,, ...
- Elasticsearch学习笔记
Why Elasticsearch? 由于需要提升项目的搜索质量,最近研究了一下Elasticsearch,一款非常优秀的分布式搜索程序.最开始的一些笔记放到github,这里只是归纳总结一下. 首先 ...
- id to load is required for loading----id被要求加载exception
表示id主键 没有找到,可能是数据库中的主键设置了not null 而你没有给予主键 还有就是没有传递主键到 数据库中
- sound tips
ASaudio&SoundAS 两个开源项目阅读: ASaudio&SoundAS 都是比较小巧的声音控制,但似乎都不能直接拿到项目只直接使用. ASaudio ASaudio的Tra ...
- OpenGL学习之路(三)
1 引子 这些天公司一次次的软件发布节点忙的博主不可开交,另外还有其它的一些事也占用了很多时间.现在坐在电脑前,在很安静的环境下,与大家分享自己的OpenGL学习笔记和理解心得,感到格外舒服.这让我回 ...
- Informatica9.6.1在Linux Red Hat 5.8上安装遇到的有关问题整理_3
3.Repository Service启动后的页面编码问题 1)错误信息: 2)原因分析及解决步骤 原因分析: informatica产品安装背后AdminConsole的Code page默认为U ...
- 常用的Oracle数据库语句 (待更新完毕)
一.常用的查询语句 1.1 常用查询 查表中有多少个字段 select count(*) from user_tab_columns where table_name=upper('表名') 或者 s ...