D. Lazy Student
 

Student Vladislav came to his programming exam completely unprepared as usual. He got a question about some strange algorithm on a graph — something that will definitely never be useful in real life. He asked a girl sitting next to him to lend him some cheat papers for this questions and found there the following definition:

The minimum spanning tree T of graph G is such a tree that it contains all the vertices of the original graph G, and the sum of the weights of its edges is the minimum possible among all such trees.

Vladislav drew a graph with n vertices and m edges containing no loops and multiple edges. He found one of its minimum spanning trees and then wrote for each edge its weight and whether it is included in the found tree or not. Unfortunately, the piece of paper where the graph was painted is gone and the teacher is getting very angry and demands to see the original graph. Help Vladislav come up with a graph so that the information about the minimum spanning tree remains correct.

Input

The first line of the input contains two integers n and m () — the number of vertices and the number of edges in the graph.

Each of the next m lines describes an edge of the graph and consists of two integers aj and bj (1 ≤ aj ≤ 109, bj = {0, 1}). The first of these numbers is the weight of the edge and the second number is equal to 1 if this edge was included in the minimum spanning tree found by Vladislav, or 0 if it was not.

It is guaranteed that exactly n - 1 number {bj} are equal to one and exactly m - n + 1 of them are equal to zero.

Output

If Vladislav has made a mistake and such graph doesn't exist, print  - 1.

Otherwise print m lines. On the j-th line print a pair of vertices (uj, vj) (1 ≤ uj, vj ≤ n, uj ≠ vj), that should be connected by the j-th edge. The edges are numbered in the same order as in the input. The graph, determined by these edges, must be connected, contain no loops or multiple edges and its edges with bj = 1 must define the minimum spanning tree. In case there are multiple possible solutions, print any of them.

Sample test(s)
input
4 5
2 1
3 1
4 0
1 1
5 0
output
2 4
1 4
3 4
3 1
3 2
input
3 3
1 0
2 1
3 1
output
-1

 题意:

给你n 个点,m条边的树,题目作出一个最小生成树,,  告诉你哪些是最小生成树的边及其权值,让你构造一颗树 满足条件

题解:

贪心,我们在按照权值从小到大排序,让最小生成树的边设定为1-x就可以了

  其他非最小生成树边 就是x-y了,以y递增为尾,找齐小于y的x就是最佳

//meek
///#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <sstream>
#include <vector>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
inline ll read()
{
ll x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
//**************************************** const int N=+;
const ll inf = 1ll<<;
const int mod= ; struct ss {
int w,d,id;
}a[N];
int cmp(ss s1,ss s2) {
if(s1.w==s2.w) return s1.d>s2.d;
return s1.w<s2.w;
}
int n,m,vis[N];
vector< pair<int,pair<int ,int > > > ans;
int main () {
int flag=;
scanf("%d%d",&n,&m);
for(int i=; i<=m; i++) {
scanf("%d%d",&a[i].w,&a[i].d);
a[i].id=i;
}
sort(a+,a+m+,cmp);
int aim=n-;
int ans1=,ans2=,l=,r=;
vis[]=vis[]=;
for(int i=;i<=m;i++) {
if(a[i].d==) {
if(!vis[r]) {
flag=;
}
if(l==r) {
r++;
l=;
}if(!vis[r]) {
flag=;
}
ans.pb(MP(a[i].id,MP(l,r)));
l++;
}
else {
ans.pb(MP(a[i].id,MP(ans1,ans2)));
vis[ans2]=;
ans2+=;
}
}
if(flag) {
cout<<-<<endl;
return ;
}
sort(ans.begin(),ans.end());
for(int i=;i<ans.size();i++) {
cout<<ans[i].se.fi<<" "<<ans[i].se.se<<endl;
}
return ;
}

代码

Codeforces Round #335 (Div. 2) D. Lazy Student 贪心的更多相关文章

  1. Codeforces Round #335 (Div. 2) D. Lazy Student 贪心+构造

    题目链接: http://codeforces.com/contest/606/problem/D D. Lazy Student time limit per test2 secondsmemory ...

  2. Codeforces Round #335 (Div. 2) D. Lazy Student 构造

    D. Lazy Student Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/606/probl ...

  3. Codeforces Round #335 (Div. 2) B. Testing Robots 水题

    B. Testing Robots Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/contest/606 ...

  4. Codeforces Round #335 (Div. 1) C. Freelancer's Dreams 计算几何

    C. Freelancer's Dreams Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/contes ...

  5. Codeforces Round #335 (Div. 2) C. Sorting Railway Cars 动态规划

    C. Sorting Railway Cars Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/conte ...

  6. Codeforces Round #335 (Div. 2) A. Magic Spheres 水题

    A. Magic Spheres Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/contest/606/ ...

  7. Codeforces Round #335 (Div. 2)

    水 A - Magic Spheres 这题也卡了很久很久,关键是“至少”,所以只要判断多出来的是否比需要的多就行了. #include <bits/stdc++.h> using nam ...

  8. Codeforces Round #335 (Div. 2) A. Magic Spheres 模拟

    A. Magic Spheres   Carl is a beginner magician. He has a blue, b violet and c orange magic spheres. ...

  9. Codeforces Round #335 (Div. 2) C. Sorting Railway Cars 连续LIS

    C. Sorting Railway Cars   An infinitely long railway has a train consisting of n cars, numbered from ...

随机推荐

  1. [转]SOLID开发原则-面向对象

    S.O.L.I.D是面向对象设计和编程(OOD&OOP)中几个重要编码原则(Programming Priciple)的首字母缩写. SRP The Single Responsibility ...

  2. js从富文本中找出固定电话、手机号码、邮箱并添加上链接。

    function richtextfindtel(value) { /*固定电话.手机号码.邮箱*/ var tempValue = value.replace(/<[^>]+>/g ...

  3. C6011 正在取消对 null 指针的引用

  4. OC中成员变量的命名

    先前写C++ 的时候,命名成员变量一般都是用 m_veriableName:的方式,但是进到新项目组,用了OC以后,发现成员变量都是用 veriableName_的方式,最后的一个下划线表示是成员变量 ...

  5. 命令学习:iftop

    iftop显示带宽使用情况 http://riobard.com/2010/04/30/l2tp-over-ipsec-ubuntu/ http://jaseywang.me/2011/12/19/i ...

  6. Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树

    题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...

  7. HDU 5294 Tricks Device 最短路+最大流

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5294 题意: 给你个无向图: 1.求最少删除几条边就能破坏节点1到节点n的最短路径, 2.最多能删除 ...

  8. ip地址转化代码实例

    /*@author: lgh@ * * */ #include <stdio.h> #include <string.h> #include <unistd.h> ...

  9. Matlab梯度下降解决评分矩阵分解

    for iter = 1:num_iters %梯度下降 用户向量 for i = 1:m %返回有0有1 是逻辑值 ratedIndex1 = R_training(i,:)~=0 ; %U(i,: ...

  10. EXCEL 跨表比较数据

    Public Sub Compare(fullname As String, sheet As String) Dim conn, sql, rows, i, cellContents ,rowInd ...