POJ 1305 Fermat vs. Pythagoras (毕达哥拉斯三元组)
设不定方程:x^2+y^2=z^2
若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组。
若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组。
定理:
正整数x,y,z构成一个本原的毕达哥拉斯三元组且y为偶数,当且仅当存在互素的正整数m,n(m>n),其中m,n的奇偶性不同,
并且满足
x=m^2-n^2,y=2*m*n, z=m^2+n^2
本题目让你求的是,在n范围内(x,y,z<=n)本原的毕达哥拉斯三元组的个数,以及n以内且毕达哥拉斯三元组不涉及的数的个数。
举个样例:
25
本原的三元组有:(3,4,5),(7,24,25),(5,12,13),(8,15,17),即第一个要输出的为4
所有的毕达哥拉斯三元组,除了上述4个外,还有:(6,8,10),(9,12,15),(12,16,20),(15,20,25)
不包含在这些三元组里面的<=n的数有9个。
思路:很显然,依据前面给出的定理,只要枚举一下m,n(m,n<=sqrt(n)),然后将三元组乘以i(保证i*z在范围内即可),
就可以求出所有的毕达哥拉斯三元组。
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <math.h> using namespace std;
const int maxn=;
int n;
int vis[+];
int gcd(int a,int b){
return b==?a:gcd(b,a%b);
}
int main()
{
while(scanf("%d",&n)!=EOF){
memset(vis,,sizeof(vis));
int m=sqrt((double)n);
//printf("%d\n",m);
int ans=; //本原的毕达哥拉斯三元组的个数
int x,y,z;
int a,b,d;
for(int i=;i<=m;i+=){
for(int j=;j<=m;j+=){ a=max(i,j);
b=min(i,j);
d=gcd(a,b);
//printf("a:%d b:%d\n",a,b);
if(d==){
x=a*a-b*b;
y=*a*b;
z=a*a+b*b;
for(int k=;k*z<=n;k++){
vis[x*k]=;
vis[y*k]=;
vis[z*k]=;
//printf("%d %d %d\n",x*k,y*k,z*k);
}
if(z<=n)
ans++; //还应该判断最初的z是否<=n,才能ans++
}
}
}
int cnt=;//所有毕达哥拉斯三元组不涉及的数的个数
for(int i=;i<=n;i++){
if(!vis[i])
cnt++;
}
printf("%d %d\n",ans,cnt);
}
return ;
}
POJ 1305 Fermat vs. Pythagoras (毕达哥拉斯三元组)的更多相关文章
- 数论(毕达哥拉斯定理):POJ 1305 Fermat vs. Pythagoras
Fermat vs. Pythagoras Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 1493 Accepted: ...
- Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))
题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...
- UVa 106 - Fermat vs Pythagoras(数论题目)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 毕达哥拉斯三元组(勾股数组)poj1305
本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z 对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为 ...
- FZU1669 Right-angled Triangle【毕达哥拉斯三元组】
主题链接: pid=1669">http://acm.fzu.edu.cn/problem.php?pid=1669 题目大意: 求满足以a.b为直角边,c为斜边,而且满足a + b ...
- poj1305 Fermat vs. Pythagoras(勾股数)
题目传送门 题意: 设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y, ...
- Python练习题 037:Project Euler 009:毕达哥拉斯三元组之乘积
本题来自 Project Euler 第9题:https://projecteuler.net/problem=9 # Project Euler: Problem 9: Special Pythag ...
- UVA106 - Fermat vs. Pythagoras
假设x为奇数,y为偶数,则z为奇数,2z与2x的最大公因数为2,2z和2x可分别写作 2z = (z + x) + (z - x) 2x = (z + x) - (z - x) 那么跟据最大公因数性质 ...
- POJ 1305
毕达哥斯三元组的模板题 练习练习 #include<iostream> #include<cstring> #include<cstdio> #include< ...
随机推荐
- C语言中进制知识总结
1.什么是进制 进制是一种计数的方式,常用的有二进制.八进制.十进制.十六进制.任何数据在计算机内存中都是以二进制的形式存放的. 我对进制的个人理解,二进制数是以2为计算单元,满2进1位的数:八进制数 ...
- Outlook打不开? 进程一大堆!
问题描述: ====== 关闭Outlook应用程序后,Outlook.exe进程仍在任务管理器里继续运行,不能关闭. 原因: ====== Outlook的插件或者扩展程序阻止Outlook关闭 解 ...
- hdu 5326 Work
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5326 Work Description It’s an interesting experience ...
- poj 3625 Building Roads
题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...
- 初始twisted(一)
1.与同步模型的优势: 1.有大量的任务,一个时刻内至少有一个任务要运行 2.任务执行大量的I/O,同步模型会因为任务阻塞而浪费大量时间 3.任务之间相互独立,任务内部交互少. 2.与同步模式客户端的 ...
- ggplot2 学习笔记 (持续更新.....)
1. 目前有四种主题 theme_gray(), theme_bw() , theme_minimal(),theme_classic() 2. X轴设置刻度 scale_x_continuous(l ...
- 29.DDR2问题1仿真模型文件
在使用modelsim仿真DDR2时,一般我们会用美光网站上下载的DDR2仿真模型.仿真模型文件一般有ddr2_module.v,ddr2.v,ddr2_mcp.v,ddr2_parameters.v ...
- curl库 c语言的curl 编程
c语言的curl 编程 [Linux@centos-64-min exercise]# gcc -Wall -o curltest curltest.c /tmp/ccosVANi.o: In fun ...
- 最大后验估计(MAP)
最大后验估计是根据经验数据获得对难以观察的量的点估计.与最大似然估计类似,但是最大的不同时,最大后验估计的融入了要估计量的先验分布在其中.故最大后验估计可以看做规则化的最大似然估计. 首先,我们回顾上 ...
- 20145120 《Java程序设计》第10周学习总结
20145120 <Java程序设计>第10周学习总结 教材学习内容总结 转自:http://www.cnblogs.com/springcsc/archive/2009/12/03/16 ...