转自:C的|、||、&、&&、异或、~、!运算

位运算
    位运算的运算分量只能是整型或字符型数据,位运算把运算对象看作是由二进位组成的位串信息,按位完成指定的运算,得到位串信息的结果。
位运算符有:
    &(按位与)、|(按位或)、^(按位异或)、~ (按位取反)。
    其中,按位取反运算符是单目运算符,其余均为双目运算符。
    位运算符的优先级从高到低,依次为~、&、^、|,
    其中~的结合方向自右至左,且优先级高于算术运算符,其余运算符的结合方向都是自左至右,且优先级低于关系运算符。
   (1)按位与运算符(&)
    按位与运算将两个运算分量的对应位按位遵照以下规则进行计算:
     0 & 0 = 0, 0 & 1 = 0, 1 & 0 = 0, 1 & 1 = 1。
即同为 1 的位,结果为 1,否则结果为 0。
    例如,设3的内部表示为
     00000011
    5的内部表示为
     00000101
    则3&5的结果为
     00000001
    按位与运算有两种典型用法,一是取一个位串信息的某几位,如以下代码截取x的最低7位:x & 0177。二是让某变量保留某几位,其余位置0,如以下代码让x只保留最低6位:x = x & 077。以上用法都先要设计好一个常数,该常数只有需要的位是1,不需要的位是0。用它与指定的位串信息按位与。
   (2)按位或运算符(|)
    按位或运算将两个运算分量的对应位按位遵照以下规则进行计算:
     0 | 0 = 0, 0 | 1 = 1, 1 | 0 = 1, 1 | 1 = 1
即只要有1个是1的位,结果为1,否则为0。
    例如,023 | 035 结果为037。
    按位或运算的典型用法是将一个位串信息的某几位置成1。如将要获得最右4为1,其他位与变量j的其他位相同,可用逻辑或运算017|j。若要把这结果赋给变量j,可写成:
     j = 017|j
   (3)按位异或运算符(^)
    按位异或运算将两个运算分量的对应位按位遵照以下规则进行计算:
     0 ^ 0 = 0, 0 ^ 1 = 1, 1 ^ 0 = 1, 1 ^ 1 = 0
即相应位的值相同的,结果为 0,不相同的结果为 1。
    例如,013^035结果为026。
    异或运算的意思是求两个运算分量相应位值是否相异,相异的为1,相同的为0。按位异或运算的典型用法是求一个位串信息的某几位信息的反。如欲求整型变量j的最右4位信息的反,用逻辑异或运算017^j,就能求得j最右4位的信息的反,即原来为1的位,结果是0,原来为0的位,结果是1。
   (4)按位取反运算符(~)
    按位取反运算是单目运算,用来求一个位串信息按位的反,即哪些为0的位,结果是1,而哪些为1的位,结果是0。例如, ~7的结果为0xfff8。
    取反运算常用来生成与系统实现无关的常数。如要将变量x最低6位置成0,其余位不变,可用代码x = x & ~077实现。以上代码与整数x用2个字节还是用4个字节实现无关。
    当两个长度不同的数据进行位运算时(例如long型数据与int型数据),将两个运算分量的右端对齐进行位运算。如果短的数为正数,高位用0补满;如果短的数为负数,高位用1补满。如果短的为无符号整数,则高位总是用0补满。
    位运算用来对位串信息进行运算,得到位串信息结果。如以下代码能取下整型变量k的位串信息的最右边为1的信息位:((k-1)^k) & k。
移位运算
    移位运算用来将整型或字符型数据作为二进位信息串作整体移动。有两个运算符:
     << (左移) 和 >> (右移)
移位运算是双目运算,有两个运算分量,左分量为移位数据对象,右分量的值为移位位数。移位运算将左运算分量视作由二进位组成的位串信息,对其作向左或向右移位,得到新的位串信息。
    移位运算符的优先级低于算术运算符,高于关系运算符,它们的结合方向是自左至右。
   (1)左移运算符(<<)
    左移运算将一个位串信息向左移指定的位,右端空出的位用0补充。例如014<<2,结果为060,即48。
    左移时,空出的右端用0补充,左端移出的位的信息就被丢弃。在二进制数运算中,在信息没有因移动而丢失的情况下,每左移1位相当于乘2。如4 << 2,结果为16。
   (2)右移运算符(>>)
    右移运算将一个位串信息向右移指定的位,右端移出的位的信息被丢弃。例如12>>2,结果为3。与左移相反,对于小整数,每右移1位,相当于除以2。在右移时,需要注意符号位问题。对无符号数据,右移时,左端空出的位用0补充。对于带符号的数据,如果移位前符号位为0(正数),则左端也是用0补充;如果移位前符号位为1(负数),则左端用0或用1补充,取决于计算机系统。对于负数右移,称用0 补充的系统为“逻辑右移”,用1补充的系统为“算术右移”。以下代码能说明读者上机的系统所采用的右移方法:
     printf("%d\n\n\n", -2>>4);
若输出结果为-1,是采用算术右移;输出结果为一个大整数,则为逻辑右移。
    移位运算与位运算结合能实现许多与位串运算有关的复杂计算。设变量的位自右至左顺序编号,自0位至15位,有关指定位的表达式是不超过15的正整数。以下各代码分别有它们右边注释所示的意义:
     ~(~0 << n)
     (x >> (1 p-n)) & ~(~0 << n)
     new |= ((old >> row) & 1) << (15 – k)
     s &= ~(1 << j)
     for(j = 0; ((1 << j) & s) == 0; j ) ;
===================================================================================================

位运算是指按二进制进行的运算。在系统软件中,常常需要处理二进制位的问题。C语言提供了6个位操作运算符。这些运算符只能用于整型操作数,即只能用于带符号或无符号的char,short,int与long类型。

C语言提供的位运算符列表
运算符 含义 描述
& 按位与 如果两个相应的二进制位都为1,则该位的结果值为1,否则为0
| 按位或 两个相应的二进制位中只要有一个为1,该位的结果值为1
^ 按位异或 若参加运算的两个二进制位值相同则为0,否则为1
~ 取反 ~是一元运算符,用来对一个二进制数按位取反,即将0变1,将1变0
<< 左移 用来将一个数的各二进制位全部左移N位,右补0
>> 右移 将一个数的各二进制位右移N位,移到右端的低位被舍弃,对于无符号数,高位补0

1、“按位与”运算符(&)
    按位与是指:参加运算的两个数据,按二进制位进行“与”运算。如果两个相应的二进制位都为1,则该位的结果值为1;否则为0。这里的1可以理解为逻辑中的true,0可以理解为逻辑中的false。按位与其实与逻辑上“与”的运算规则一致。逻辑上的“与”,要求运算数全真,结果才为真。若,A=true,B=true,则A∩B=true 例如:3&5 3的二进制编码是11(2)。(为了区分十进制和其他进制,本文规定,凡是非十进制的数据均在数据后面加上括号,括号中注明其进制,二进制则标记为2)内存储存数据的基本单位是字节(Byte),一个字节由8个位(bit)所组成。位是用以描述电脑数据量的最小单位。二进制系统中,每个0或1就是一个位。将11(2)补足成一个字节,则是00000011(2)。5的二进制编码是101(2),将其补足成一个字节,则是00000101(2)
按位与运算:
00000011(2)
&00000101(2)
00000001(2)
由此可知3&5=1
c语言代码:
#include <stdio.h>
main()
{
int a=3;
int b = 5;
printf("%d",a&b);
}
按位与的用途:
(1)清零
若想对一个存储单元清零,即使其全部二进制位为0,只要找一个二进制数,其中各个位符合一下条件:

原来的数中为1的位,新数中相应位为0。然后使二者进行&运算,即可达到清零目的。
例:原数为43,即00101011(2),另找一个数,设它为148,即10010100(2),将两者按位与运算:
00101011(2)
&10010100(2)
00000000(2)
c语言源代码:
#include <stdio.h>
main()
{
int a=43;
int b = 148;
printf("%d",a&b);
}
(2)取一个数中某些指定位
若有一个整数a(2byte),想要取其中的低字节,只需要将a与8个1按位与即可。
a 00101100 10101100
b 00000000 11111111
c 00000000 10101100
(3)保留指定位:
与一个数进行“按位与”运算,此数在该位取1.
例如:有一数84,即01010100(2),想把其中从左边算起的第3,4,5,7,8位保留下来,运算如下:
01010100(2)
&00111011(2)
00010000(2)
即:a=84,b=59
    c=a&b=16
c语言源代码:
#include <stdio.h>
main()
{
int a=84;
int b = 59;
printf("%d",a&b);
}

2、“按位或”运算符(|)
两个相应的二进制位中只要有一个为1,该位的结果值为1。借用逻辑学中或运算的话来说就是,一真为真


例如:60(8)|17(8),将八进制60与八进制17进行按位或运算。
00110000
|00001111
00111111 
c语言源代码:
#include <stdio.h>
main()
{
int a=060;
int b = 017;
printf("%d",a|b);
}
应用:按位或运算常用来对一个数据的某些位定值为1。例如:如果想使一个数a的低4位改为1,则只需要将a与17(8)进行按位或运算即可。

3、交换两个值,不用临时变量
例如:a=3,即11(2);b=4,即100(2)。
想将a和b的值互换,可以用以下赋值语句实现:
    a=a∧b;
    b=b∧a;
    a=a∧b;
a=011(2)
    (∧)b=100(2)
a=111(2)(a∧b的结果,a已变成7)
    (∧)b=100(2)
b=011(2)(b∧a的结果,b已变成3)
    (∧)a=111(2)

a=100(2)(a∧b的结果,a已变成4)
等效于以下两步:
    ① 执行前两个赋值语句:“a=a∧b;”和“b=b∧a;”相当于b=b∧(a∧b)。
    ② 再执行第三个赋值语句: a=a∧b。由于a的值等于(a∧b),b的值等于(b∧a∧b),

因此,相当于a=a∧b∧b∧a∧b,即a的值等于a∧a∧b∧b∧b,等于b。
很神奇吧!
c语言源代码:
#include <stdio.h>
main()
{
int a=3;
int b = 4;
a=a^b;
b=b^a;
a=a^b;
printf("a=%d b=%d",a,b);
}

4、“取反”运算符(~)
他是一元运算符,用于求整数的二进制反码,即分别将操作数各二进制位上的1变为0,0变为1。
例如:~77(8)
源代码:
#include <stdio.h>
main()
{
int a=077;
printf("%d",~a);
}

5、左移运算符(<<)

左移运算符是用来将一个数的各二进制位左移若干位,移动的位数由右操作数指定(右操作数必须是非负

值),其右边空出的位用0填补,高位左移溢出则舍弃该高位。
例如:将a的二进制数左移2位,右边空出的位补0,左边溢出的位舍弃。若a=15,即00001111(2),左移2

位得00111100(2)。
源代码:
#include <stdio.h>
main()
{
int a=15;
printf("%d",a<<2);
}
左移1位相当于该数乘以2,左移2位相当于该数乘以2*2=4,15<<2=60,即乘了4。但此结论只适用于该

数左移时被溢出舍弃的高位中不包含1的情况。
    假设以一个字节(8位)存一个整数,若a为无符号整型变量,则a=64时,左移一位时溢出的是0

,而左移2位时,溢出的高位中包含1。

6、右移运算符(>>)
右移运算符是用来将一个数的各二进制位右移若干位,移动的位数由右操作数指定(右操作数必须是非负

值),移到右端的低位被舍弃,对于无符号数,高位补0。对于有符号数,某些机器将对左边空出的部分

用符号位填补(即“算术移位”),而另一些机器则对左边空出的部分用0填补(即“逻辑移位”)。注

意:对无符号数,右移时左边高位移入0;对于有符号的值,如果原来符号位为0(该数为正),则左边也是移

入0。如果符号位原来为1(即负数),则左边移入0还是1,要取决于所用的计算机系统。有的系统移入0,有的

系统移入1。移入0的称为“逻辑移位”,即简单移位;移入1的称为“算术移位”。 
例: a的值是八进制数113755: 
   a:1001011111101101 (用二进制形式表示)
   a>>1: 0100101111110110 (逻辑右移时)
   a>>1: 1100101111110110 (算术右移时)
   在有些系统中,a>>1得八进制数045766,而在另一些系统上可能得到的是145766。Turbo C和其他一些C

编译采用的是算术右移,即对有符号数右移时,如果符号位原来为1,左面移入高位的是1。
源代码:
#include <stdio.h>
main()
{
int a=0113755;
printf("%d",a>>1);
}

7、位运算赋值运算符

位运算符与赋值运算符可以组成复合赋值运算符。
   例如: &=, |=, >>=, <<=, ∧=
   例: a & = b相当于 a = a & b
         a << =2相当于a = a << 2

转:C的|、||、&、&&、异或、~、!运算的更多相关文章

  1. 网络误区:不用中间变量交换2个变量的value,最高效的是异或运算.

    本文记录了不使用中间变量交换2个变量的value,很多的网络留言说是直接异或运算就可以了,而且效率很高,是真的吗? 这里简单的说一下我的环境:Win7 32位,Qt creator 5.4.1 编译器 ...

  2. C、C++、Java异或运算交换变量变量值的区别

    今天看到一位大神的博客,深受感触.决定也发一篇博客,证明一下我还活着. 于是我翻看以前学习时做的一些笔记,整理了一下,得到了一个关于异或运算交换变量变量值的笔记. 首先来看下面三组表达式,看起来他们都 ...

  3. HDOJ 1287 破译密码(异或运算)

    Problem Description 有个叫"猪头帮"的国家,采用一种简单的文法加密,他们所用的语言里面只有大写字母,没有其他任何字符:现在还知道他们加密的方法是:只用一个大写字 ...

  4. hdu2095 像水题的不错题 异或运算

    异或运算的基础有点忘记了 先介绍一下..2个数异或 就是对于每一个二进制位进行位运算 具有2个特殊的性质 1.一个数异或本身恒等于0,如5^5恒等于0: 2.一个数异或0恒等于本身,如5^0恒等于5. ...

  5. bis和bic命令实现或和异或运算

    从20世纪70年代末到80年代末,Digital Equipment的VAX计算机是一种非常流行的机型.它没有布尔运算AND和OR指令,只有bis(位设置)和bic(位清除)这两种指令.两种指令的输入 ...

  6. 二进制按位与(&) 按位或(|)  异或运算(^)

    1.参加运算的两个数据,按照二进制进行按位与的运算. 运算规则:0&0=0;   0&1=0;    1&0=0;     1&1=1; 即:两位同时为“1”,结果才为 ...

  7. 基于c#的windows基础设计(学习日记1)【关于异或运算】

    第一次接触异或运算,总体来说比哈希算法简单的多,无论是理解还是代码的难易度,唯一不好的是在固定了密钥之后,随机性就小了很多,所以安全性比起哈希算法还是有所差距. 原理在网站上很多都有所以就不再赘述了. ...

  8. MATLAB:图像的与、或、非、异或逻辑运算(&、|、~、xor)

    图像的与.或.非.异或逻辑运算涉及到了&.|.~和xor符号 close all;%关闭当前所有图形窗口,清空工作空间变量,清除工作空间所有变量 clc; clear all; I=imrea ...

  9. BZOJ4103 异或运算

    4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的数列X={x1 ...

  10. 对java位运算之异或运算的一点记录

    首先,异或运算是,每个位上的数不同为1,相同为0. 其次,对两个数值变量的值进行三次异或运算就等于是交换了两个变量的值. 例如: int a = 4; int b = 10; a = a ^ b; b ...

随机推荐

  1. linux命令总结2

    昨天继续对239进行挖掘,想把运营登录浮层的示例页面放在这台测试机上,供大家使用,结果在配置apache时出现了问题,无论怎样,页面都是403 Forbidden,最后终于被露颖同学经过2个小时的努力 ...

  2. 深入理解include预编译原理

    http://ticktick.blog.51cto.com/823160/596179 你了解 #include 某个 .h 文件后,编译器做了哪些操作么? 你清楚为什么在 .h文件中定义函数实现的 ...

  3. 2016CCPC东北地区大学生程序设计竞赛 1001 HDU5922

    链接http://acm.hdu.edu.cn/showproblem.php?pid=5922 题意:最小生成树,但边的权值是连接两点的最小公倍数 解法:不要真的写最小生成树啦,只要其他点和第一点相 ...

  4. (6)redis 事务

    redis对事务的支持目前还比较简单.redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令. 由于redis是单线程来处理所有client的请求的所 ...

  5. SqlSever基础 datediff 计算两个时间相差多少年份

    镇场诗:---大梦谁觉,水月中建博客.百千磨难,才知世事无常.---今持佛语,技术无量愿学.愿尽所学,铸一良心博客.------------------------------------------ ...

  6. 摩托罗拉SE4500 三星 S3C6410 Wince6.0平台软解码调试记录以及驱动相关问题解释

    虽然S3C6410出来很多年了,甚至于已经停产了,出货的几乎都有依赖于库存,SE4500也出来很多年了,但是网上依旧不会有调试资料帮助你,一切源于自私.希望本文能帮到你,不必感谢.本文来自C.S.D. ...

  7. 学习笔记TimePicker

    new TimePickerDialog(this, new OnTimeSetListener() { @Override public void onTimeSet(TimePicker view ...

  8. jquery之clone()方法详解

    clone()函数用于克隆当前匹配元素集合的一个副本,并以jQuery对象的形式返回.你也可以简单地理解为:克隆当前jQuery对象. 你还可以指定是否复制这些匹配元素(甚至它们的子元素)的附加数据( ...

  9. Common Macros for Build Commands and Properties

    https://msdn.microsoft.com/en-us/library/c02as0cs.aspx $(ProjectDir)      The directory of the proje ...

  10. 将文件读取到内存、打印pe结构

    #include <stdio.h> #include <malloc.h> #include <stdlib.h> #include <string.h&g ...