画图代码

clear
% http://www.peteryu.ca/tutorials/matlab/visualize_decision_boundaries % load RankData
% NumTrain =200; load RankData2 % X = [X, -ones(size(X,1),1)]; lambda = 20;
rho = 2;
c1 =10;
c2 =10;
epsilon = 0.2;
result=[];
ker = 'linear';
ker = 'rbf';
sigma = 1/1000;
method=5
contour_level1 = [-epsilon,0, epsilon];
contour_level2 = [-epsilon,0, epsilon];
xrange = [-5 5];
yrange = [-5 5];
% step size for how finely you want to visualize the decision boundary.
inc = 0.01;
% generate grid coordinates. this will be the basis of the decision
% boundary visualization.
[x1, x2] = meshgrid(xrange(1):inc:xrange(2), yrange(1):inc:yrange(2));
% size of the (x, y) image, which will also be the size of the
% decision boundary image that is used as the plot background.
image_size = size(x1) xy = [x1(:) x2(:)]; % make (x,y) pairs as a bunch of row vectors.
%xy = [reshape(x, image_size(1)*image_size(2),1) reshape(y, image_size(1)*image_size(2),1)] % loop through each class and calculate distance measure for each (x,y)
% from the class prototype. % calculate the city block distance between every (x,y) pair and
% the sample mean of the class.
% the sum is over the columns to produce a distance for each (x,y)
% pair. switch method
case 1
par = ParNonLinearDualSVORIM(X, y, c1, c2, epsilon, rho, ker, sigma);
f = TestPrecisionNonLinear(par,X, y,X, y, ker,epsilon,sigma);
% set up the domain over which you want to visualize the decision
% boundary
d = [];
for k=1:max(y)
d(:,k) = decisionfun(xy, par, X,y,k,epsilon, ker,sigma)';
end
[~,idx] = min(abs(d)/par.normw{k},[],2);
contour_level=contour_level1;
case 2
par = ParNonLinearDualBoundSVORIM(X, y, c1, c2, epsilon, rho, ker, sigma);
f = TestPrecisionNonLinear(par,X, y,X, y, ker,epsilon,sigma);
% set up the domain over which you want to visualize the decision
% boundary
d = [];
for k=1:max(y)
d(:,k) = decisionfun(xy, par, X,y,k,epsilon, ker,sigma)';
end
[~,idx] = min(abs(d)/par.normw{k},[],2);
contour_level=contour_level1;
case 3
% par = NewSVORIM(X, y, c1, c2, epsilon, rho);
par = LinearDualSVORIM(X,y, c1, c2, epsilon, rho); % ADMM for linear dual model
d = [];
for k=1:max(y)
w= par.w(:,k)';
d(:,k) = w*xy'-par.b(k);
end
[~,idx] = min(abs(d)/norm(par.w),[],2);
contour_level=contour_level1;
case 4
path='C:\Users\hd\Desktop\svorim\svorim\';
name='RankData2';
k=0;
fname1 = strcat(path, name,'_train.', num2str(k));
fname2 = strcat(path, name,'_targets.', num2str(k));
fname2 = strcat(path, name,'_test.', num2str(k));
Data=[X y];
save(fname1,'Data','-ascii');
save(fname2,'y','-ascii');
save(fname2,'X','-ascii');
command= strcat(path,'svorim -F 1 -Z 0 -Co 10 -p 0 -Ko 1/10 C:\Users\hd\Desktop\svorim\svorim\', name, '_train.', num2str(k));
% command= 'C:\Users\hd\Desktop\svorim\svorim\svorim -F 1 -Z 0 -Co 10 C:\Users\hd\Desktop\svorim\svorim\RankData2_train.0';
% command='C:\Users\hd\Desktop\svorim\svorim\svorim -F 1 -Z 0 -Co 10 G:\datasets-orreview\discretized-regression\5bins\X4058\matlab\mytask_train.0'
dos(command);
fname2 = strcat(fname1, '.svm.alpha');
alpha_bais = textread(fname2);
r=length(unique(y));
model.alpha=alpha_bais(1:end-r+1);
model.b=alpha_bais(end-r+2:end);
xnew=xy;
nT=size(xnew,1);
for k=1:r-1
% d(:,k)=model.alpha'*Kernel(ker,X',xy',sigma)- model.b(k);
if nT >1000
for j=1:nT/1000
xnewk=xnew(1000*(j-1)+1:1000*j,:);
f(1000*(j-1)+1:1000*j) = model.alpha'*Kernel(ker,X',xnewk',sigma)- model.b(k);
end
xnewk=xnew(1000*j+1:nT,:);
f(1000*j+1:nT)=model.alpha'*Kernel(ker,X',xnewk',sigma)- model.b(k);
else
f =model.alpha'*Kernel(ker,X',xnew',sigma)- model.b(k);
end
d(:,k)=f;
end pretarget=[];idx=[];
for i=1:size(xy,1)
idx(i) = min([find(d(i,:)<0,1,'first'),length(model.b)+1]);
end
contour_level=contour_level2;
case 5
train.patterns =X;
train.targets = y;
test.patterns =xy;
test.targets = ones(size(xy,1),1);
switch ker
case 'linear'
parameters=[c1];
Algorithm = SVOREXLin();
Title='SVORLin(c=10)';
case 'rbf'
parameters=[c1 sigma];
Algorithm = SVORIM();
Title='SVORIM(\gamma=1/1000)';
end
[model_information] = Algorithm.runAlgorithm(train, test, parameters); % r=length(unique(y));
% model.alpha=model_information.model.projection';
% model.b=model_information.model.thresholds;
% xnew=xy;
% nT=size(xnew,1);
% for k=1:r-1
% % d(:,k)=model.alpha'*Kernel(ker,X',xy',sigma)- model.b(k);
% if nT >1000
% for j=1:nT/1000
% xnewk=xnew(1000*(j-1)+1:1000*j,:);
% f(1000*(j-1)+1:1000*j) = model.alpha'*Kernel(ker,X',xnewk',sigma)- model.b(k);
% end
% xnewk=xnew(1000*j+1:nT,:);
% f(1000*j+1:nT)=model.alpha'*Kernel(ker,X',xnewk',sigma)- model.b(k);
% else
% f =model.alpha'*Kernel(ker,X',xnew',sigma)- model.b(k);
% end
% d(:,k)=f;
% end
%
% pretarget=[];idx=[];
% for i=1:size(xy,1)
% idx(i) = min([find(d(i,:)<0,1,'first'),length(model.b)+1]);
% end
idx=model_information.predictedTest;
contour_level=contour_level2;
MZE =1- mean(model_information.predictedTrain==y);
MAE= mean(abs(model_information.predictedTrain-y));
Title = [Title 'MZE=' num2str(MZE) 'MAE=' num2str(MAE)]; case 6
train.patterns =X;
train.targets = y;
test.patterns =xy;
test.targets = ones(size(xy,1),1);
switch ker
case 'linear'
parameters=[c1];
Algorithm = SVORLin();
Title='REDSVMLin(c=10)';
case 'rbf'
parameters=[c1 sigma];
Algorithm = REDSVM();
Title='REDSVM(\gamma=1/1000)';
end
[model_information] = Algorithm.runAlgorithm(train, test, parameters);
idx=model_information.predictedTest;
contour_level=contour_level2;
MZE =1- mean(model_information.predictedTrain==y);
MAE= mean(abs(model_information.predictedTrain-y));
Title = [Title 'MZE=' num2str(MZE) 'MAE=' num2str(MAE)];
end % reshape the idx (which contains the class label) into an image.
decisionmap = reshape(idx, image_size); % figure(7);
%
% %show the image
% imagesc(xrange,yrange,decisionmap);
% hold on;
% set(gca,'ydir','normal');
%
% % colormap for the classes:
% % class 1 = light red, 2 = light green, 3 = light blue
% cmap = [1 0.8 0.8; 0.95 1 0.95; 0.9 0.9 1];
% colormap cool;
%
% imagesc(xrange,yrange,decisionmap); % plot the class training data. color = {'r.','go','b*','r.','go','b*'}; for i=1:max(y)
plot(X(y==i,1),X(y==i,2), color{i});
hold on
end
% include legend
% legend('Class 1', 'Class 2', 'Class 3','Location','NorthOutside', ...
% 'Orientation', 'horizontal');
legend('Class 1', 'Class 2', 'Class 3');
set(gca,'ydir','normal');
hold on
for k = 1:max(y)-1
% decisionmapk = reshape(d(:,k), image_size);
% contour(x1,x2, decisionmapk, [contour_level(1) contour_level(1) ], color{k},'Fill','off');
% contour(x1,x2, decisionmapk, [contour_level(2) contour_level(2) ], color{k},'Fill','off','LineWidth',2);
% contour(x1,x2, decisionmapk, [contour_level(3) contour_level(3) ], color{k},'Fill','off');
if k<max(y)
contour(x1,x2, decisionmap, [k+1 k+1], color{k},'Fill','off','LineWidth',2);
end
end hold off
%
% label the axes.
xlabel('x1');
ylabel('x2');
title(Title)

MATLAB画图的更多相关文章

  1. Matlab画图,坐标轴范围设置和间隔设置

    在Matlab画图的时候,系统默认的坐标轴范围以及间隔有时候并不是很合适,如何根据自己的要求来显示呢,Set语句就可以帮忙咯!! 1. set(gca,'xtick',0:100:2500)      ...

  2. Matlab画图-非常具体,非常全面

    Matlab画图 强大的画图功能是Matlab的特点之中的一个,Matlab提供了一系列的画图函数,用户不须要过多的考虑画图的细节,仅仅须要给出一些基本參数就能得到所需图形,这类函数称为高层画图函数. ...

  3. 设置 matlab 画图格式

    1:设置 matlab 画图格式 clear;clc; % load("array.mat"); % Bestallarray=array; % rllofcircle(Besta ...

  4. 如何解决 Matlab 画图时中文显示乱码的问题?

    使用的是win10系统,从前几个月某一天,我的matlab的figure里的中文都变成了口口.很是郁闷,还以为是动到了什么配置引起的. 前几天更新了matlab 2018b,发现还有这个问题.就觉得不 ...

  5. matlab 画图进阶

    matlab 画图进阶 applications of matlab in engineering 图表类型的选择 first:advanced 2d plots special plots logl ...

  6. matlab 画图技巧

    基本画图工具:matlab 画图中线型及颜色设置 matlab中坐标轴设置技巧 **Matlab中的坐标轴设置技巧**    axisoff;      %去掉坐标轴  axistight;      ...

  7. 20140513 matlab画图

    1.matlab画图 x1=[1.00E-06,2.00E-06,4.00E-06,9.00E-06,2.00E-05,4.00E-05,8.00E-05,2.00E-04,4.00E-04,7.00 ...

  8. matlab画图函数plot()/set/legend

    简单plot()/legend/XY轴范围axis 除了坐标轴信息外还可以添加其它的信息,如所画曲线的信息等:测试代码如下 x=0:pi/20:2*pi; y1=sin(x); y2=cos(x); ...

  9. linux tomcat部署含有matlab画图打包的java web程序

    首先说下问题:matlab可以把相关算法代码打包成jar文件共java调用,本例使用的jar文件的作用是画图并保存,然后部署在linux的tomcat中进行发布.这里出现了一个问题,具体如下:linu ...

随机推荐

  1. 泛型之Dictionary

    Dictionary<string, string>是一个泛型 他本身有集合的功能有时候可以把它看成数组 他的结构是这样的:Dictionary<[key], [value]> ...

  2. Servlet与Tomcat

    Web应用不仅局限于展示在服务器上的静态页面,更多的是根据用的请求动态的生成页面信息,还可以从数据库中提取数据,生成页面返回给用户. 第一种方法:遵循HTTP协议实现一个服务器端软件 第二种方法:利用 ...

  3. hdu 3033 I love sneakers! 分组背包

    I love sneakers! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. 杭电HDU1042(有点坑的高精度)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1042 题意: Given an integer N(0 ≤ N ≤ 10000), your task i ...

  5. RTSP协议、RTMP协议、HTTP协议的区别

    理论上RTSP RTMPHTTP都可以做直播和点播,但一般做直播用RTSP RTMP,做点播用HTTP.做视频会议的时候原来用SIP协议,现在基本上被RTMP协议取代了. RTSP. RTMP.HTT ...

  6. ccc

    课本第291页第4题 #include<stdio.h> void main() { int n, m, i, k; int p_begin; ]; scanf("%d" ...

  7. Js_字符串操作

    字符串操作方法 charAt()以单字符串的形式返回给定位置的哪个字符串 例: var num = "hello world"; alert(num.charAt(1))//“e” ...

  8. Java 7 命令/工具 jcmd 使用详细解释

    常见功能 列出 Java 进程 PID 以及 名称 列出进程的 thread dump 得到进程的 heap dump 得到进程的 JVM 参数 具体如下: 列出 Java 进程 PID 以及 名称 ...

  9. Linux下软件安装方法即路径设置

    Linux下软件安装方法即路径设置 http://www.cnblogs.com/edward259/archive/2010/07/02/1770066.html

  10. armp启动

    1.启动apahcehttpd.exe -k starthttpd.exe -k restart 重启httpd.exe -k install 安装 2.php启动apache.conf文件添加:Lo ...