Caffe 深度学习框架介绍
转自:http://suanfazu.com/t/caffe/281
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,目前在Google工作。
Caffe是纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口;可以在CPU和GPU直接无缝切换:
Caffe::set_mode(Caffe::GPU);
Caffe的优势
- 上手快:模型与相应优化都是以文本形式而非代码形式给出。
Caffe给出了模型的定义、最优化设置以及预训练的权重,方便立即上手。 - 速度快:能够运行最棒的模型与海量的数据。
Caffe与cuDNN结合使用,测试AlexNet模型,在K40上处理每张图片只需要1.17ms. - 模块化:方便扩展到新的任务和设置上。
可以使用Caffe提供的各层类型来定义自己的模型。 - 开放性:公开的代码和参考模型用于再现。
- 社区好:可以通过BSD-2参与开发与讨论。
Caffe的网络定义
Caffe中的网络都是有向无环图的集合,可以直接定义:
name: "dummy-net"
layers {name: "data" …}
layers {name: "conv" …}
layers {name: "pool" …}
layers {name: "loss" …}
数据及其导数以blobs的形式在层间流动。
Caffe的各层定义
Caffe层的定义由2部分组成:层属性与层参数,例如
name:"conv1"
type:CONVOLUTION
bottom:"data"
top:"conv1"
convolution_param{
num_output:20
kernel_size:5
stride:1
weight_filler{
type: "xavier"
}
}
这段配置文件的前4行是层属性,定义了层名称、层类型以及层连接结构(输入blob和输出blob);而后半部分是各种层参数。
Blob
Blob是用以存储数据的4维数组,例如
- 对于数据:Number*Channel*Height*Width
- 对于卷积权重:Output*Input*Height*Width
- 对于卷积偏置:Output*1*1*1
训练网络
网络参数的定义也非常方便,可以随意设置相应参数。
甚至调用GPU运算只需要写一句话:
solver_mode:GPU
Caffe的安装与配置
Caffe需要预先安装一些依赖项,首先是CUDA驱动。不论是CentOS还是Ubuntu都预装了开源的nouveau显卡驱动(SUSE没有这种问题),如果不禁用,则CUDA驱动不能正确安装。以Ubuntu为例,介绍一下这里的处理方法,当然也有其他处理方法。
# sudo vi/etc/modprobe.d/blacklist.conf
# 增加一行 :blacklist nouveau
sudoapt-get --purge remove xserver-xorg-video-nouveau #把官方驱动彻底卸载:
sudoapt-get --purge remove nvidia-* #清除之前安装的任何NVIDIA驱动
sudo service lightdm stop #进命令行,关闭Xserver
sudo kill all Xorg
安装了CUDA之后,依次按照Caffe官网安装指南1.3K安装BLAS、OpenCV、Boost即可。
Caffe跑跑MNIST试试
在Caffe安装目录之下,首先获得MNIST数据集:
cd data/mnist
sh get_mnist.sh
生成mnist-train-leveldb/ 和 mnist-test-leveldb/,把数据转化成leveldb格式:
sh examples/mnist/create_mnist.sh
训练网络:
sh train_lenet.sh
Caffe 深度学习框架介绍的更多相关文章
- [转]Caffe 深度学习框架上手教程
Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281 blink 15年1月 6 Caffe448是一个清 ...
- Caffe 深度学习框架上手教程
Caffe 深度学习框架上手教程 blink 15年1月 Caffe (CNN, deep learning) 介绍 Caffe -----------Convolution Architec ...
- 深度学习与CV教程(8) | 常见深度学习框架介绍
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- Ubuntu 14.04 安装caffe深度学习框架
简介:如何在ubuntu 14.04 下安装caffe深度学习框架. 注:安装caffe时一定要保持网络状态好,不然会遇到很多麻烦.例如下载不了,各种报错. 一.安装依赖包 $ sudo apt-ge ...
- Spark如何与深度学习框架协作,处理非结构化数据
随着大数据和AI业务的不断融合,大数据分析和处理过程中,通过深度学习技术对非结构化数据(如图片.音频.文本)进行大数据处理的业务场景越来越多.本文会介绍Spark如何与深度学习框架进行协同工作,在大数 ...
- 贾扬清分享_深度学习框架caffe
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...
- 深度学习框架Caffe的编译安装
深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...
- 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...
- Caffe深度学习计算框架
Caffe | Deep Learning Framework是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 Yangqing Jia,目前在Google工作.Caffe是 ...
随机推荐
- CUBRID学习笔记 14 删除主键错误
发生这样的问题.其实和别的数据库基本原因差不多. 就是外键冲突. 看看有没有外键引用这个表的主键. 然后删除外键. 就可以了 SELECT class_name FROM db_index WHER ...
- Scrum Meeting--Twelve(2015-11-3)
今日已完成任务和明日要做的任务 姓名 今日已完成任务 今日时间 明日计划完成任务 估计用时 董元财 服务器修改与优化 5h 服务器修改与优化 4h 胡亚坤 客户端数据更新 2h 客户端意见反馈收集 2 ...
- 进程&线程
进程与线程的区别 什么是进程(Process):普通的解释就是,进程是程序的一次执行,而什么是线程(Thread),线程可以理解为进程中的执行的一段程序片段.在一个多任务环境中下面的概念可以帮助我们理 ...
- iOS企业版打包(转载)
转自 http://www.cnblogs.com/shenlaiyaoshi/p/5472474.html 神来钥匙-陈诗友 iOS 企业版 打包 使用 iOS 企业版的证书发布应用可以跳过 A ...
- MVC中Url请求与控制器的默认约定
1.请求的url如:http://localhost:52481/Home/Browse?genre=1控制器方法:public string Browse(string genre) //这里返回值 ...
- Javascript中日期函数的相关操作
Date对象具有多种构造函数,下面简单列举如下: new Date() new Date(milliseconds) new Date(datestring) new Date(year, month ...
- SVN标准目录结构
Trunk 这是SVN目录的主分支,表示日常开发中的项目,任何时候Trunk里包含的都是最新的开发代码. 这里的代码将会工作到你的下一个主要发布版本. Trunk应该只被用来开发将会成为你的下一个重要 ...
- UIButton的常见设置
- (void)setTitle:(NSString *)title forState:(UIControlState)state;设置按钮的文字 - (void)setTitleColor:(UIC ...
- Object Pascal 过程与函数
过程与函数 过程与函数是实现一定功能的语句块,是程序中的特定功能单元.可以在程序的其他地方被调用,也可以进行递归调用.过程与函数的区别在于过程没有返回值,而函数有返回值. 1.过程与函数的定义 过程与 ...
- 【Linux日志】系统日志及分析
Linux系统拥有非常灵活和强大的日志功能,可以保存几乎所有的操作记录,并可以从中检索出我们需要的信息. 大部分Linux发行版默认的日志守护进程为 syslog,位于 /etc/syslog 或 / ...