继续看黄学长代码

原题:

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

学过一点DP的都能想出的状态转移方程:f[i]=min(f[j]+(sum[i]-sum[j]+i-j-1-l)^2)

然后可以发现有些东西是怎么都不会变得,可以让s[i]=sum[i]+i,c=l+1

呢么这个方程就变成f[i]=min(f[j]+(s[i]-s[j]-c)^2)

然后就搞斜率优化

假设在i阶段有个一个优于j的决策k,呢么f[k]+(s[i]-s[k]-c)^2<=f[j]+(s[i]-s[j]-c)^2

呢么想要证明对于i后的所有状态t,要证明决策单调性,就是f[k]+(s[t]-s[k]-c)^2<=f[j]+(s[t]-s[j]-c)^2

因为s是固定的,所以s[t]可以表示为s[i]+v

f[k]+(s[i]+v-s[k]-c)^2<=f[j]+(s[i]+v-s[j]-c)^2

f[k]+ (s[i]-s[k]-c)^2 + 2*v*(s[i]-s[k]-c) + v^2 <= f[j]+ (s[i]-s[j]-c)^2 + 2*v*(s[i]-s[j]-c) + v^2

因为决策k是优于决策j的,所以f[k]<=f[j]

问了几个人都管不了(s[i]-s[k]-c)^2 QAQ,求大神指教QAQ

根据显然法可得,只需要证明 2*v*(s[i]-s[k]-c)<=2*v*(s[i]-s[j]-c),黄学长直接跳到这里

然后s[j]<=s[k]

然后求斜率优化

f[k]+(s[i]-s[k]-c)^2<=f[j]+(s[i]-s[j]-c)^2

展开略

(f[k]+(s[k]+c)^2-f[j]-(s[j]+c)^2)/(2*(s[k]-s[j]))<=f[i]

然后优化斜率

内个(s[i]-s[k]-c)^2怎么都想不明白,心好累qaq

代码:

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read(){int z=,mark=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')mark=-; ch=getchar();}
while(ch>=''&&ch<=''){z=(z<<)+(z<<)+ch-''; ch=getchar();}
return z*mark;
}
int n,m;
int dui[],tou=,wei=;
long long f[],s[];
long long fang(long long x){ return x*x;}
double get_ratio(int y,int x){ return ((f[x]-f[y]+fang(s[x]+m)-fang(s[y]+m))/(2.0*(s[x]-s[y])));}//斜率是右边-左边,所以这里参数先输入y,再输入x
void dp(){
dui[tou=]=;
for(int i=;i<=n;i++){
while(wei<tou && get_ratio(dui[wei],dui[wei+])<=s[i]) wei++;
int temp=dui[wei];
f[i]=f[temp]+fang(s[i]-s[temp]-m);
while(wei<tou && get_ratio(dui[tou],i)<get_ratio(dui[tou-],dui[tou])) tou--;
dui[++tou]=i;
}
}
int main(){//freopen("ddd.in","r",stdin);
cin>>n>>m; m++;
s[]=;
for(int i=;i<=n;i++) s[i]=s[i-]+read();
for(int i=;i<=n;i++) s[i]+=i;
dp();
cout<<f[n]<<endl;
return ;
}

【BZOJ1010】【HNOI2008】玩具装箱的更多相关文章

  1. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  2. bzoj1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

    1010: [HNOI2008]玩具装箱toy 题目:传送门 题解: 很明显的一题动态规划... f[i]表示1~i的最小花费 那么方程也是显而易见的:f[i]=min(f[j]+(sum[i]-su ...

  3. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  4. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  5. [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  6. [BZOJ1010][HNOI2008]玩具装箱toy 解题报告

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  7. BZOJ1010 [HNOI2008]玩具装箱toy

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  8. BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...

  9. 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...

  10. 题解【bzoj1010 [HNOI2008]玩具装箱TOY】

    斜率优化动态规划可以用来解决这道题.同时这也是一道经典的斜率优化基础题. 分析:明显是动态规划.令\(dp[i]\)为前\(i\)个装箱的最小花费. 转移方程如下: \[dp[i]=\min\limi ...

随机推荐

  1. [网络技术][转]PPTP连接过程

    转自:http://blog.csdn.net/zhu_hit/article/details/5698958 在未来几天会总结一下PPTP的工作过程,分为以下3篇讲述. 1. PPTP连接过程: 2 ...

  2. Python Web 应用:WSGI基础

    在Django,Flask,Bottle和其他一切Python web 框架底层的是Web Server Gateway Interface,简称WSGI.WSGI对Python来说就像 Servle ...

  3. 谈谈你对http的理解

    一.先看一张图: 二.要client与sever能沟通 1.需要一样的规则,遵循一定的规范-----------协议 好比:不同国家的人,需要一门通用的语言. 2.谈到协议------http---- ...

  4. Python 安全类目推荐 (持续更新)

    推荐学习书目 › Learn Python the Hard Way › Python 学习手册 › Python Cookbook › Python 基础教程 Python Sites › PyPI ...

  5. HDOJ-三部曲一(搜索、数学)-1008-Prime Path

    Prime Path Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total S ...

  6. iOS:死锁

    死锁:指多个进程因竞争共享资源而造成的一种僵局,若无外力作用,这些进程都将永远不能再向前推进. 安全状态与不安全状态:安全状态指系统能按某个进程顺序来为每个进程分配其所需资源,直至最大需求,使每个进程 ...

  7. Java 集合深入理解(8):AbstractSequentialList

    点击查看 Java 集合框架深入理解 系列, - ( ゜- ゜)つロ 乾杯~ 今天有点无聊,来学学 AbstractSequentialList 解解闷 吧! AbstractSequentialLi ...

  8. 浅谈Android应用性能之内存

    本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! 文/ jaunty [博主导读]在Android开发中,不免会遇到许多OOM现象,一方面可能是由于开 ...

  9. 8、网页制作Dreamweaver(jQuery基础:安装、语法)

    在<网页制作Dreamweaver(悬浮动态分层导航)>中,运用到了jQuery的技术,轻松实现了菜单的下拉.显示.隐藏的效果,不必再用样式表一点点地修改,省去了很多麻烦,那么jQuery ...

  10. 用UltralSO安装CentOS 和 Ubuntu

    UltralSO是一个U盘制作工具,这几天用UltralSO安装了CentOS和Ubuntu 制作这两个U盘启动程序的区别是,CentOS安装完后,需要把.iso文件拷贝到U盘中,而且CentOS文件 ...