poj 1797 Heavy Transportation(最短路径Dijkdtra)
Time Limit: 3000MS | Memory Limit: 30000K | |
Total Submissions: 26968 | Accepted: 7232 |
Description
Hugo Heavy is happy. After the breakdown of the Cargolifter project
he can now expand business. But he needs a clever man who tells him
whether there really is a way from the place his customer has build his
giant steel crane to the place where it is needed on which all streets
can carry the weight.
Fortunately he already has a plan of the city with all streets and
bridges and all the allowed weights.Unfortunately he has no idea how to
find the the maximum weight capacity in order to tell his customer how
heavy the crane may become. But you surely know.
Problem
You are given the plan of the city, described by the streets (with
weight limits) between the crossings, which are numbered from 1 to n.
Your task is to find the maximum weight that can be transported from
crossing 1 (Hugo's place) to crossing n (the customer's place). You may
assume that there is at least one path. All streets can be travelled in
both directions.
Input
first line contains the number of scenarios (city plans). For each city
the number n of street crossings (1 <= n <= 1000) and number m of
streets are given on the first line. The following m lines contain
triples of integers specifying start and end crossing of the street and
the maximum allowed weight, which is positive and not larger than
1000000. There will be at most one street between each pair of
crossings.
Output
The
output for every scenario begins with a line containing "Scenario #i:",
where i is the number of the scenario starting at 1. Then print a
single line containing the maximum allowed weight that Hugo can
transport to the customer. Terminate the output for the scenario with a
blank line.
Sample Input
1
3 3
1 2 3
1 3 4
2 3 5
Sample Output
Scenario #1:
4
题目大意,有n个城m条边,每个边有个最大的通过量,求1城市到n城市的一条最大通路容量是多少
迪杰斯特拉算法的变形,松弛条件改为道路容量为道路上容量最小的边,然后在选容量最大的路
ac代码如下:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<memory.h>
using namespace std;
long map[][];
long dp[],n;
bool v[];
void dij(int ii){
for(int i=;i<=n;i++){
dp[i]=map[ii][i];
}
dp[ii]=;v[ii]=;
int T=n;
while(T--){
int k=-,s;
for(int i=;i<=n;i++){//找下一条边
if(dp[i]>k&&!v[i]){
k=dp[i];
s=i;
}
}
v[s]=;
if(s==n)return;
for(int i=;i<=n;i++){//利用下一条边进行松弛
if(!v[i]&&dp[i]<min(dp[s],map[s][i])){
dp[i]=min(dp[s],map[s][i]);
}
}
}
}
int main(){
long T,m,s,e,c,ca=;
cin>>T;
while(T--){
cin>>n>>m;
memset(v,,sizeof(v));
memset(dp,,sizeof(dp));
memset(map,,sizeof(map));
for(int i=;i<=m;i++){
cin>>s>>e>>c;
map[s][e]=map[e][s]=max(map[s][e],c);
}
dij();
cout<<"Scenario #"<<ca++<<":"<<endl;
cout<<dp[n]<<endl<<endl;
}
return ;
}
提交结果:
poj 1797 Heavy Transportation(最短路径Dijkdtra)的更多相关文章
- POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)
POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...
- poj 1797 Heavy Transportation(最大生成树)
poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...
- POJ.1797 Heavy Transportation (Dijkstra变形)
POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...
- POJ 1797 Heavy Transportation
题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 Heavy Transportation SPFA变形
原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 Heavy Transportation (Dijkstra变形)
F - Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & ...
- POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】
Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64 ...
- POJ 1797 Heavy Transportation (最大生成树)
题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...
- POJ 1797 Heavy Transportation (Dijkstra)
题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...
随机推荐
- Hadoop 基本操作
1.关闭安全模式 hadoop dfsadmin -safemode leave
- Java 抓取 thread dump (Full Thread Stack Trace) 方法汇总
顾名思义,表示一个时间点上,显示进程里面每一个线程的 stack trace,以及线程之间关联,比如等待 常用来定位一些 不响应,CPU 很高,内存使用很高问题 汇总表格如下 工具 操作系统 Java ...
- 吐槽下近期的4G手机:
吐槽下近期的4G手机: 1.iphone6和6p,分别是4.7和5.5吋屏,1810和2915毫安时不可拆卸电池,双核64位苹果A8处理器.电池容量太小,不经用,中度使用一天一充,而且不支持VOOC闪 ...
- 双心ping GUI工具1.0
双心ping GUI工具1.0该软件利用WindowsAPI提供了图形界面的ping程序,同时还可以调用DOS下的ping命令.ping成功后自动加入网址列表框及同目录下的列表文件Pinglist.i ...
- OneProxy与其它数据库中间件的对比
OneProxy 优点 性能 缺点 闭源,被商业公司掌控,到时候随别人蹂躏 可维护性极差,缺乏友好的出错信息,光维护这个环节就被他人掌控 定价不明 有没有这样的公司? 大到10wtps,但是没人能理解 ...
- JS预解析
1.在逐行读js代码前,解析器会先提取所有声明的var变量和函数 js解析器会先把脚本里所有var变量声明读一遍,但是它只读变量名字,不读变量值,一开始它会赋给所有读到的var变量一个[未定义]的值. ...
- 谈谈HttpUrlConnection与DefaultHttpClient一些区别
HttpClient封装的很庞大,很复杂,你必须按照,他封装的思想去使用它,导致它很不灵活. 相比之下,HttpUrlConnection很轻巧,很方便,很灵活. HttpClient对于数据上面的封 ...
- linux笔记:RPM软件包管理-yum在线管理
ip地址配置: 用ifconfig命令只能配置ip和子网掩码,这样只能访问内网:如果需要访问公网则还必须要网关和DNS. 使用setup工具配置ip: 网络yum源配置: 常用yum命令:查询 常用y ...
- spring3-hibernate3整合
Spring与Hibernate整合关键点: 1) Hibernate的SessionFactory对象交给Spring创建: 2) hibernate事务交给spring的声明式事务管理. SH整合 ...
- DOM中元素节点、属性节点、文本节点
DOM中有12中节点,但最常用到的是元素节点,属性节点,文本节点. 元素节点的节点类型(nodeType)是1: 属性节点的节点类型(nodeType)是2: 文本节点的节点类型(nodeType)是 ...