转自:http://database.ctocio.com.cn/353/11664853.shtml

另外很不错的对于索引及索引优化的文章:

http://www.cnblogs.com/magialmoon/archive/2013/11/23/3439042.html

http://www.cnblogs.com/baochuan/archive/2012/05/23/2513224.html

索引的使用

  示例数据库

  为了讨论索引策略,需要一个数据量不算小的数据库作为示例。本文选用MySQL官方文档中提供的示例数据库之一:employees。这个数据库关系复杂度适中,且数据量较大。下图是这个数据库的E-R关系图(引用自MySQL官方手册):

  MySQL官方文档中关于此数据库的页面为http://dev.mysql.com/doc/employee/en/employee.html。里面详细介绍了此数据库,并提供了下载地址和导入方法,如果有兴趣导入此数据库到自己的MySQL可以参考文中内容。

  最左前缀原理与相关优化

  高效使用索引的首要条件是知道什么样的查询会使用到索引,这个问题和B+Tree中的“最左前缀原理”有关,下面通过例子说明最左前缀原理。

  这里先说一下联合索引的概念。在上文中,我们都是假设索引只引用了单个的列,实际上,MySQL中的索引可以以一定顺序引用多个列,这种索引叫做联合索引,一般的,一个联合索引是一个有序元组,其中各个元素均为数据表的一列,实际上要严格定义索引需要用到关系代数,但是这里我不想讨论太多关系代数的话题,因为那样会显得很枯燥,所以这里就不再做严格定义。另外,单列索引可以看成联合索引元素数为1的特例。

  以employees.titles表为例,下面先查看其上都有哪些索引:

以下是代码片段:
SHOW INDEX FROM employees.titles;
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Null | Index_type |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| titles | 0 | PRIMARY | 1 | emp_no | A | NULL | | BTREE |
| titles | 0 | PRIMARY | 2 | title | A | NULL | | BTREE |
| titles | 0 | PRIMARY | 3 | from_date | A | 443308 | | BTREE |
| titles | 1 | emp_no | 1 | emp_no | A | 443308 | | BTREE |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+

  从结果中可以到titles表的主索引为<emp_no, title,="" from_date="">,还有一个辅助索引<emp_no>。为了避免多个索引使事情变复杂(MySQL的SQL优化器在多索引时行为比较复杂),这里我们将辅助索引drop掉:

以下是代码片段:
ALTER TABLE employees.titles DROP INDEX emp_no;

  这样就可以专心分析索引PRIMARY的行为了。

  情况一:全列匹配。

以下是代码片段:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title='Senior Engineer' AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| 1 | SIMPLE | titles | const | PRIMARY | PRIMARY | 59 | const,const,const | 1 | |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+

  很明显,当按照索引中所有列进行精确匹配(这里精确匹配指“=”或“IN”匹配)时,索引可以被用到。这里有一点需要注意,理论上索引对顺序是敏感的,但 是由于MySQL的查询优化器会自动调整where子句的条件顺序以使用适合的索引,例如我们将where中的条件顺序颠倒:

以下是代码片段:
EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26' AND emp_no='10001' AND title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| 1 | SIMPLE | titles | const | PRIMARY | PRIMARY | 59 | const,const,const | 1 | |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+

  效果是一样的。

  情况二:最左前缀匹配。

以下是代码片段:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+

  当查询条件精确匹配索引的左边连续一个或几个列时,如<emp_no>或<emp_no, title="">,所以可以被用到,但是只能用到一部分,即条件所组成的最左前缀。上面的查询从分析结果看用到了PRIMARY索引,但是 key_len为4,说明只用到了索引的第一列前缀。

  情况三:查询条件用到了索引中列的精确匹配,但是中间某个条件未提供。

以下是代码片段:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+

  此时索引使用情况和情况二相同,因为title未提供,所以查询只用到了索引的第一列,而后面的from_date虽然也在索引中,但是由于 title不存在而无法和左前缀连接,因此需要对结果进行扫描过滤from_date(这里由于emp_no唯一,所以不存在扫描)。如果想让 from_date也使用索引而不是where过滤,可以增加一个辅助索引<emp_no, from_date="">,此时上面的查询会使用这个索引。除此之外,还可以使用一种称之为“隔离列”的优化方法,将emp_no与from_date 之间的“坑”填上。

  首先我们看下title一共有几种不同的值:

以下是代码片段:
SELECT DISTINCT(title) FROM employees.titles;
+--------------------+
| title |
+--------------------+
| Senior Engineer |
| Staff |
| Engineer |
| Senior Staff |
| Assistant Engineer |
| Technique Leader |
| Manager |
+--------------------+

  只有7种。在这种成为“坑”的列值比较少的情况下,可以考虑用“IN”来填补这个“坑”从而形成最左前缀:

以下是代码片段:
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no='10001'
AND title IN ('Senior Engineer', 'Staff', 'Engineer', 'Senior Staff', 'Assistant Engineer', 'Technique Leader', 'Manager')
AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 7 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

  这次key_len为59,说明索引被用全了,但是从type和rows看出IN实际上执行了一个range查询,这里检查了7个key。看下两种查询的性能比较:

以下是代码片段:
SHOW PROFILES;
+----------+------------+-------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+-------------------------------------------------------------------------------+
| 10 | 0.00058000 | SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26'|
| 11 | 0.00052500 | SELECT * FROM employees.titles WHERE emp_no='10001' AND title IN ... |
+----------+------------+-------------------------------------------------------------------------------+

  “填坑”后性能提升了一点。如果经过emp_no筛选后余下很多数据,则后者性能优势会更加明显。当然,如果title的值很多,用填坑就不合适了,必须建立辅助索引。

  情况四:查询条件没有指定索引第一列。

以下是代码片段:
EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26';
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+

  由于不是最左前缀,索引这样的查询显然用不到索引。

  情况五:匹配某列的前缀字符串。

 以下是代码片段:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='' AND title LIKE 'Senior%';
view sourceprint?
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 56 | NULL | 1 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

  此时可以用到索引,但是如果通配符不是只出现在末尾,则无法使用索引,例如like '%x%'或‘%x’都无法使用到索引。

  情况六:范围查询。

 以下是代码片段:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no<'' and title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 4 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

  范围列可以用到索引(必须是最左前缀),但是范围列后面的列无法用到索引。同时,索引最多用于一个范围列,因此如果查询条件中有两个范围列则无法全用到索引。

 以下是代码片段:
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no<''
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 4 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

  可以看到索引对第二个范围索引无能为力。这里特别要说明MySQL一个有意思的地方,那就是仅用explain可能无法区分范围索引和多值匹配,因为在type中这两者都显示为range。同时,用了“between”并不意味着就是范围查询,例如下面的查询:

 以下是代码片段:
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no BETWEEN '' AND ''
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

  看起来是用了两个范围查询,但作用于emp_no上的“BETWEEN”实际上相当于“IN”,也就是说emp_no实际是多值精确匹配。可以看到这个查询用到了索引全部三个列。因此在MySQL中要谨慎地区分多值匹配和范围匹配,否则会对MySQL的行为产生困惑。

 以下是代码片段:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='' AND left(title, 6)='Senior';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+

  虽然这个查询和情况五中功能相同,但是由于使用了函数left,则无法为title列应用索引,而情况五中用LIKE则可以。再如:

 以下是代码片段:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no - 1='';
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+

  显然这个查询等价于查询emp_no为10001的函数,但是由于查询条件是一个表达式,MySQL无法为其使用索引。看来MySQL还没有智能到自动优化常量表达式的程度,因此在写查询语句时尽量避免表达式出现在查询中,而是先手工私下代数运算,转换为无表达式的查询语句。

  通过一个实际生产环境中的数据存取需求,分析如何设计此存储结构,如何操纵存储的数据,以及如何使操作的成本或代价更低,系统开销最小。同时,让更多初学者明白数据存储的表上索引是如何一个思路组织起来的,希望起到一个参考模板的价值作用。

  1.测试用例描述

  测试用例为B2C领域,一张用于存储用户选购物品而生成的产品订单信息表,不过去掉一些其他字段,以便用于测试,其表中的数据项也不特别描述,字段意思见表:

 以下是代码片段:
SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles;
+-------------+
| Selectivity |
+-------------+
| 0.0000 |
+-------------+

  其中,主键信息:PRIMARY KEY(order_id,`goods_id`),为何主键索引索引字段的顺序为:order_id,`goods_id`,而不是: `goods_id`, order_id呢?原因很简单,goods_id在订单信息表中的重复率会比order_id高,也即order_id的筛选率更高,可以减少扫描索引记录个数,从而达到更高的效率,同时,下面即将会列出的SQL也告诉我们,有部分SQL语句的WHERE字句中只出现order_id字段,为此更加坚定我们必须把字段:order_id作为联合主键索引的头部,`goods_id`为联合主键索引的尾部。

  数据存储表设计的小结:

  设计用于存储数据的表结构,首先要知道有哪些数据项,也即行内常说的数据流,以及各个数据项的属性,比如存储的数据类型、值域范围及长度、数据完整性等要求,从而确定数据项的属性定义。存储的数据项信息确定之后,至少进行如下三步分析:

  ● 首先,确定哪些数据项或组合,可以作为记录的唯一性标志;

  ● 其次,要确定对数据记录有哪些操作,每个操作的频率如何,对网站等类型应用,还需要区分前台操作和后台操作,也即分外部用户的操作,还是内部用户的操作;

  ● 最后,对作为数据记录操作的条件部分的数据项,分析其数据项的筛选率如何,也即数据项不同值占总数据记录数的比例关心,比例越接近1则是筛选率越好,以及各个值得分布率;

  综上所述,再让数据修改性操作优先级别高于只读性操作,就可以创建一个满足要求且性能较好的索引组织结构。

  数据的存取设计,就涉及一块非常重要的知识: 关系数据库的基础知识和关系数据理论的范式。对于范式的知识点,特别解释下,建议学到BCNF范式为止,1NF、2NF、3NF和BCNF之间的差别,各自规避的问题、存在的缺陷都要一清二楚,但是在真实的工作环境中,不要任何存取设计都想向范式靠,用一句佛语准确点表达:空即是色,色即是空。

转自:http://database.ctocio.com.cn/257/12120257.shtml

多列索引

  MySQL单列索引是我们使用MySQL数据库中经常会见到的,MySQL单列索引和组合索引的区别可能有很多人还不是十分的了解,下面就为您分析两者的主要区别,供您参考学习。

  为了形象地对比两者,再建一个表:

 CREATE TABLE myIndex ( i_testID INT NOT NULL AUTO_INCREMENT,
vc_Name VARCHAR(50) NOT NULL,
vc_City VARCHAR(50) NOT NULL, i_Age INT NOT NULL, i_SchoolID INT NOT NULL,
PRIMARY KEY (i_testID) );

  在这 10000 条记录里面 7 上 8 下地分布了 5 条 vc_Name="erquan" 的记录,只不过 city,age,school 的组合各不相同。
  来看这条query:

 SELECT i_testID FROM myIndex WHERE vc_Name='erquan' AND vc_City='郑州' AND i_Age=25;

  首先考虑建MySQL单列索引:
  在vc_Name列上建立了索引。执行 T-SQL 时,MYSQL 很快将目标锁定在了vc_Name=erquan 的 5 条记录上,取出来放到一中间结果集。在这个结果集里,先排除掉 vc_City 不等于"郑州"的记录,再排除 i_Age 不等于 25 的记录,最后筛选出唯一的符合条件的记录。
  虽然在 vc_Name 上建立了索引,查询时MYSQL不用扫描整张表,效率有所提高,但离我们的要求还有一定的距离。同样的,在 vc_City 和 i_Age 分别建立的MySQL单列索引的效率相似。
  为了进一步榨取 MySQL 的效率,就要考虑建立组合索引。就是将 vc_Name,vc_City,i_Age 建到一个索引里:

 ALTER TABLE myIndex ADD INDEX name_city_age (vc_Name(10),vc_City,i_Age);

  建表时,vc_Name 长度为 50,这里为什么用 10 呢?因为一般情况下名字的长度不会超过 10,这样会加速索引查询速度,还会减少索引文件的大小,提高 INSERT 的更新速度。
  执行 T-SQL 时,MySQL 无须扫描任何记录就到找到唯一的记录。
  肯定有人要问了,如果分别在 vc_Name,vc_City,i_Age 上建立单列索引,让该表有 3 个单列索引,查询时和上述的组合索引效率一样吗?大不一样,远远低于我们的组合索引。虽然此时有了三个索引,但 MySQL 只能用到其中的那个它认为似乎是最有效率的单列索引。
  建立这样的组合索引,其实是相当于分别建立了:vc_Name,vc_City,i_Age vc_Name,vc_City vc_Name
  这样的三个组合索引!为什么没有 vc_City,i_Age 等这样的组合索引呢?这是因为 mysql 组合索引“最左前缀”的结果。简单的理解就是只从最左面的开始组合。并不是只要包含这三列的查询都会用到该组合索引,下面的几个query会用到:

 SELECT * FROM myIndex WHREE vc_Name="erquan" AND vc_City="郑州"
SELECT * FROM myIndex WHREE vc_Name="erquan"

  而下面几个则不会用到:

 SELECT * FROM myIndex WHREE i_Age=20 AND vc_City="郑州"
SELECT * FROM myIndex WHREE vc_City="郑州"
使用索引列的查询条件优化:

.对于多列索引(组合索引),必须有索引中的最左列。
index_a_b_c(a,b,c)这个组合索引可以被使用的条件是a/ab/ac(同单a)/abc .对于使用like的查询,后面如果是常量并且只有%号不在第一个字符,索引才可能被使用。
模糊查询遵守最左固定原则,模糊查询的首部不能是% .如果对大文本进行搜索,应该使用全文索引。
InnoDB不支持全文索引,MyISAM支持,所以InnoDB表尽量不要使用like ‘%...%’。 .如果列名是索引,使用 index_column is null将使用索引。Oracle是不行的。 .如果mysql估计使用索引比全表扫描更慢,不会使用索引。
可以检查统计当做条件的索引键值是否超过整个表数据的20%,如果超过就不会使用索引。 .如果使用memory/head表并且where条件中不使用”=”进行索引列,那么不会用到索引。Head表只有在”=”的时候才会使用索引。 .用or分割开的条件,如果or前的条件中的列有索引,而后面列中没有索引,那么涉及到的索引都不会被用到。 .如果列是字符串,那么一定要在where条件中把字符串常量的值用引号引起来,否则不能走索引。
mysql默认把输入的常量值进行转换以后才进行检索 .经过普通运算或函数运算后的索引字段不能使用索引 .不等于操作不能使用索引,<>、not in等 .Order by 优化:某些情况下,mysql可以使用一个索引满足order by,而不需要额外的排序。Where条件与order by 使用相同的索引,并且order by的顺序和索引顺序相同,并且order by的字段都是升序或者都是降序。
SELECT * FROM t1 ORDER BY key_part1,key_part2,... ;
SELECT * FROM t1 WHERE key_part1= ORDER BY key_part1 DESC, key_part2
DESC;
SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 DESC;
但是以下情况不使用索引:
SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC ;
--order by 的字段混合 ASC 和 DESC
SELECT * FROM t1 WHERE key2=constant ORDER BY key1 ;
-- 用于查询行的关键字与 ORDER BY 中所使用的不相同
SELECT * FROM t1 ORDER BY key1, key2 ;
-- 对不同的关键字使用 ORDER BY

【MySQL】MySQL索引背后的之使用策略及优化【转】的更多相关文章

  1. MySQL索引背后的之使用策略及优化(高性能索引策略)

    为了讨论索引策略,需要一个数据量不算小的数据库作为示例.本文选用MySQL官方文档中提供的示例数据库之一:employees.这个数据库关系复杂度适中,且数据量较大.下图是这个数据库的E-R关系图(引 ...

  2. 【转】MySQL索引背后的数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  3. [转]MySQL索引背后的数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  4. MySQL索引背后的数据结构及算法原理【转】

    本文来自:张洋的MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持 ...

  5. MySQL索引背后的数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  6. [纯干货] MySQL索引背后的数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  7. MySQL 索引背后的数据结构及算法原理

    本文转载自http://blog.jobbole.com/24006/ 摘要本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引 ...

  8. 浅谈MySQL索引背后的数据结构及算法

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  9. 浅谈MySQL索引背后的数据结构及算法(转载)

    转自:http://blogread.cn/it/article/4088?f=wb1 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储 ...

随机推荐

  1. BestCoder Round #85 hdu5777 domino

    domino 题意: 问题描述 小白在玩一个游戏.桌子上有n张多米诺骨牌排成一列.它有k次机会,每次可以选一个还没有倒的骨牌,向左或者向右推倒.每个骨 牌倒下的时候,若碰到了未倒下的骨牌,可以把它推倒 ...

  2. OpenCV实现KNN算法

    原文 OpenCV实现KNN算法 K Nearest Neighbors 这个算法首先贮藏所有的训练样本,然后通过分析(包括选举,计算加权和等方式)一个新样本周围K个最近邻以给出该样本的相应值.这种方 ...

  3. git(5) windows下 pycharm + git(github) ,在本地方便管理

    本篇博客讲解一下,windows下如何在pycharm下使用git(使用github设置和git一样),在本地进行commit,push,pull等操作 优点:简单,方便 pycharm版本:5.0. ...

  4. [物理学与PDEs]书中的错误指出

    记号意义: P--Page, 第几页; L--Line, 顺数第几行; LL--Last Line, 倒数第几行. P 64 L 1 ``15)'' should be ``14)''. P 70 L ...

  5. C++模板元编程 - 2 模仿haskell的列表以及相关操作

    这是昨天和今天写的东西,利用C++的可变模板参数包以及包展开,模式匹配的一些东西做的,感觉用typename...比轮子叔那个List<A,List<B, List<C, D> ...

  6. vs2015-Azure Mobile Service

    /App_Data /App_Start/ WebApiConfig.cs using System; using System.Collections.Generic; using System.C ...

  7. 使用maven下载依赖包及maven常见问题汇总

    最近下载了SPRING3.1.4,发现只有SPRING相关的源码,没有其依赖的jar包.SPRING依赖的jar相当多,自己一个一个的下载比较费劲,就仔细阅读了SPRING下载说明,新版本的SPRIN ...

  8. SPR EAD NET 6

    SPR EAD_NET6 下载地址 http://www.gcpowertools.com.cn/downloads/trial/Spread.NET/EN_SPREAD_NET6_SETUP_RA_ ...

  9. oc 中随机数的用法(arc4random( ) 、random( )、CCRANDOM_0_1( )

    来源:http://www.cnblogs.com/jay-dong/archive/2012/07/23/2604916.html 1).arc4random() 比较精确不需要生成随即种子 使用方 ...

  10. Unable to save settings: Failed to save settings. Please restart IntelliJ IDEA 解决方案

    ubuntu 上 今天安idea 社区版,报这个错, 解决办法. 1 首先删除掉配置目录,例如安装的是idea最新的15.1版本,就删除 .ideaIC这个文件夹,重启解决了 2 而后,不大一会.又开 ...