P2320 06湖南 鬼谷子的钱袋

    • 171通过
    • 480提交
  • 题目提供者xmyzwls
  • 标签各省省选
  • 难度普及+/提高

提交该题 讨论 题解 记录

最新讨论

  • 题目有误
  • 数据需要特判
  • 评测系统太神了

题目描述

输入输出格式

输入格式:

输出格式:

输入输出样例

输入样例#1:

3
输出样例#1:

2
1 2
分析:首先要把题目读懂,即可以用n个1,1个2~m的数,通过加法组合成1~m的所有整数,当然,这所有的数字加起来要等于m,似乎有点复杂,该怎么处理呢?
显然,不好直接处理本题,那么先假设一下m=10,如果想要组成1~m的所有整数,那么1是必须要的,因为如果不要1就不能组成1了,然后想,如果有一部分数通过加上一个数等于另外一部分数该多好!
那么可以想到把10个数分成1~5和6~10,那么显然,1~5的数字加上5就能够组成6~10,所以取5,然后可以发现这就是不断地求子问题,那么递归,但是5是奇数怎么办?因为c++中的除法向下取整,所以分成1~2,3~5,1~2必须加上3才能组成3~5,那么把3取上,3又分成1和2,3显然1必须加上2才能取2,3,那么取2,因为1是必须取的,所以取1.
透过现象看本质,可以发现求解的过程很像倍增,每一次可以取的数目都*2,那么如果2^n > m,那么n即为所求的袋子数,如何求每个袋子装的金币呢?根据之前模拟的过程记录答案即可.
通过这道题要明白,一些用字母表示的数不好直接处理,可以设特殊值,从现象看本质,最后想到求解的方法!
代码可以缩成1个循环!
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int m,tot,cnt,ans[]; int main()
{
scanf("%d", &m);
for (int i = ; ; i = i * )
{
tot++;
if (i > m)
{
printf("%d\n", tot - );
break;
}
}
printf("1 "); //1是肯定要选的
while (m / != )
{
++cnt;
if (m % == )
ans[cnt] = m / ;
if (m % == )
ans[cnt] = m / + ;
m /= ;
}
for (int i = cnt; i >= ; i--) //因为要从小到大输出,所以逆序输出
printf("%d ", ans[i]); return ;
}

洛谷P2320 鬼谷子的钱袋的更多相关文章

  1. 洛谷P2320鬼谷子的钱袋.

    题目 这个题考察二进制分解. \(Code\) #include <bits/stdc++.h> #pragma GCC optimize(2) #pragma GCC optimize( ...

  2. 【洛谷·P2320】鬼谷子的钱袋

    这道题很神奇 我们举一个例子,m=12 那么我们可以把它分成两部分,L和R: (1,2,,6)(7,8,,12) 我们可以发现R中的数都可以由12/2和左边的数组合得到 那么我们对L再分------ ...

  3. 洛谷P2320 [HNOI2006]鬼谷子的钱袋

    https://www.luogu.org/problem/show?pid=2320#sub 题目描述全是图 数学思维,分治思想 假设总数为n 从n/2+1到n的数都可以用1~n的数+n/2表示出来 ...

  4. 洛谷 P2320 [HNOI2006]鬼谷子的钱袋

    题目传送门 解题思路: 对于每一个数i,我们都可以用i/2来表示,而对于i/2我们可以用i/4表示......(以此类推) 举个例子,对于10,我们可以用5 + 5来表示,而5可以用 3 + 2表示, ...

  5. P2320鬼谷子的钱袋(分治)

    ------------恢复内容开始------------ 描述:https://www.luogu.com.cn/problem/P2320 m个金币,装进一些钱袋.钱袋中大于1的钱互不相同. 问 ...

  6. 洛谷2320 bzoj1192 鬼谷子的钱袋

    题目链接 题意概述:把正整数n分为m个正整数,m个正整数中不允许出现复数个非1的正整数,保证所有小于n的正整数都可以用一部分正整数的和表示,并且使m尽量小. 这道题不知道为啥bzoj上没有要求输出方案 ...

  7. P2320 [HNOI2006]鬼谷子的钱袋

    洛谷2320 06湖南 鬼谷子的钱袋 来源 题目描述 鬼谷子非常聪明,正因为这样,他非常繁忙,经常有各诸侯车的特派员前来向他咨询时政.有一天,他在咸阳游历的时候,朋友告诉他在咸阳最大的拍卖行(聚宝商行 ...

  8. p2320&bzoj1192 鬼谷子的钱袋

    传送门(洛谷) 传送门(bzoj) 题目 鬼谷子非常聪明,正因为这样,他非常繁忙,经常有各诸侯车的特派员前来向他咨询时政.有一天,他在咸阳游历的时候,朋友告诉他在咸阳最大的拍卖行(聚宝商行)将要举行一 ...

  9. 题解 P2320 【[HNOI2006]鬼谷子的钱袋】

    P2320 [HNOI2006]鬼谷子的钱袋 挺有趣的一道题,之所以发这篇题解是因为感觉思路的更清晰一点qwq 此题主要有两种方法: 一.分治思想 例如要凑出1~20,假如我们已经能凑出1~10了,那 ...

随机推荐

  1. API爬虫--Twitter实战

    本篇将从实际例子出发,展示如何使用api爬取twitter的数据. 1. 创建APP 进入https://apps.twitter.com/,创建自己的app.只有有了app才可以访问twitter的 ...

  2. solr环境搭建

    介绍摘自百度百科:Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口.用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引:也可以通过 ...

  3. ADF_Advanced ADF系列1_Fusion应用的客制和个性化(Part1)

    2015-02-17 Created By BaoXinjian

  4. DBA_Oracle冷备份和热备份的处理(概念)

    2014-07-27 Created By BaoXinjian

  5. java静态代理

    WorkIF.java package com.wzh.test; public interface WorkIf { void doWork(String name);} work.java pac ...

  6. c#图片上绘制半透明矩形

    p.CreateGraphics().FillRectangle( ,Color.LightGreen)), iLeft, iTop, iRight - iLeft, iBottom - iTop); ...

  7. Jmeter+jenkins接口性能测试平台实践整理(二)

    本篇为Jmeter+jenkins+Ant方式执行性能测试 1.设置JDK,ANT环境变量: 2.build.xml文件: <?xml version="1.0" encod ...

  8. Android应用框架浅析

    http://blog.csdn.net/yanbober/article/category/3206943 Android应用层View绘制流程与源码分析   http://blog.csdn.ne ...

  9. Memcached常用命令及使用说明(转)

    一.存储命令 存储命令的格式: 1 2 <command name> <key> <flags> <exptime> <bytes> < ...

  10. MySQL 字符串 转 int/double CAST与CONVERT 函数的用法

    http://hongmin118.iteye.com/blog/2029728   转的 MySQL 的CAST()和CONVERT()函数可用来获取一个类型的值,并产生另一个类型的值.两者具体的语 ...