机器学习技法-GBDT算法
课程地址:https://class.coursera.org/ntumltwo-002/lecture
之前看过别人的竞赛视频,知道GBDT这个算法应用十分广泛。林在第八讲,简单的介绍了AdaBoost,这一讲会更深入的从优化的角度看AdaBoost,然后引出GBDT算法,最后林对最近几讲的集成学习模型(Aggregation Models)做了个很棒的总结。
一、RandomForest Vs AdaBoost-DTree
- RF随机森林算法:通过bootstrapping有放回的抽样获取不同的训练数据Dt,不同的Dt可同时并行化生成多棵决策树最后将多棵决策树‘一人一票’的方式结合生成G。
- AdaBoost-DTree:通多重赋权reweight(样本权重Ut)的方式获取不同的训练数据Dt,Ut依赖于上一次的迭代的分类结果,决策树之间存在依赖关系,必须串行生成每一棵决策树。最后每一棵决策树通过权值alphat结合生成G。
- 在AdaBoost-DTree中,为了不修改原来的模型,数据按照样本权重u的比例大小对样本进行sampling,采样后的数据D中也能体现出样本的权重。
- 直接使用fully grown tree 训练Dt,会产生autocracy,需要剪枝或使用弱决策树算法
二、从优化的角度看AdaBoost
1.AdaBoost的指数损失函数(loss function)
- 林通过指数损失函数,从优化的角度推导了AdaBoost-DTree
- 样本权重与所有gt在该样本的投票的分数有关,分数越高,权值越小。AdaBoost迭代过程中会降低样本的权重。
2.下一步是如何根据损失函数找到下一个gt,最后的结论是损失函数的梯度的最大值(steepest descent)。
下面是推导过程,建议去看视频理解,有点绕。
三、GBDT(Gradient Boosting Decision Tree)
1.AdaBoost vs GradientBoost
这部分是将第二部分的AdaBoost进行推广,误差函数(error function)扩展为任意的。
2.使用平方误差函数(squared-error)的GDBT,和上面的思路一样求解ht和移动的幅度
四、模型融合(Aggregation models)的对比、总结
1.获得不同的gt之后的融合方式的对比
2.获取gt的方式和融合的方式对比
机器学习技法-GBDT算法的更多相关文章
- 【机器学习】--GBDT算法从初始到应用
一.前述 提升是一种机器学习技术,可以用于回归和分类的问题,它每一步产生弱预测模型(如决策树),并加权累加到总模型中:如果每一步的弱预测模型的生成都是依据损失函数的梯度方式的,那么就称为梯度提升(Gr ...
- 机器学习系列------1. GBDT算法的原理
GBDT算法是一种监督学习算法.监督学习算法需要解决如下两个问题: 1.损失函数尽可能的小,这样使得目标函数能够尽可能的符合样本 2.正则化函数对训练结果进行惩罚,避免过拟合,这样在预测的时候才能够准 ...
- 机器学习中的算法-决策树模型组合之随机森林与GBDT
机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使 ...
- 《机器学习技法》---GBDT
1 对决策树使用adaboost 对决策树使用adaboost时,有以下几个问题: (1)adaboost每次更新的样本权重如何应用到决策树中? 由于我们不知道决策树的err目标是什么,因此通常的方法 ...
- 机器学习之——集成算法,随机森林,Bootsing,Adaboost,Staking,GBDT,XGboost
集成学习 集成算法 随机森林(前身是bagging或者随机抽样)(并行算法) 提升算法(Boosting算法) GBDT(迭代决策树) (串行算法) Adaboost (串行算法) Stacking ...
- GB和GBDT 算法流程及分析
1.优化模型的两种策略: 1)基于残差的方法 残差其实就是真实值和预测值之间的差值,在学习的过程中,首先学习一颗回归树,然后将“真实值-预测值”得到残差,再把残差作为一个学习目标,学习下一棵回归树,依 ...
- GBDT算法原理深入解析
GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting ...
- 机器学习技法课之Aggregation模型
Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...
- 工业级GBDT算法︱微软开源 的LightGBM(R包正在开发....)
看完一篇介绍文章后,第一个直觉就是这算法已经配得上工业级属性.日前看到微软已经公开了这一算法,而且已经发开python版本,本人觉得等hadoop+Spark这些平台配齐之后,就可以大规模宣传啦~如果 ...
随机推荐
- java面向对象编程— —第七章 继承
7.1继承的起源 继承(Inheritance),即在面向对象编程中,可以通过扩展(extends)一个已有的类,并继承该类的属性的行为,来创建一个新的类. 已有的类称为父类(也可以称为基类,超类), ...
- jquery之ajax之$.get方法的使用
jquery对ajax进行了封装,非常方便. 自己用$.get()方法写了个小demo,包括客户端和服务端. 客户端: <!DOCTYPE html> <html> <h ...
- encodeURI
encodeURI("http://www.cnblogs.com/season-huang/some other thing"); //整个URL进行编码"http:/ ...
- 都是以父元素的width为参照物的
本文依赖于一个基础却又容易混淆的css知识点:当margin/padding取形式为百分比的值时,无论是left/right,还是top/bottom,都是以父元素的width为参照物的!也许你会说, ...
- wp8.1 Study7: ListView 和GridView应用
对于列表控件,WP8.1常用的是ListView.GridView.ListBox控件.其中前两个是从第三个继承来的. 1.ListView控件 它是展示垂直列表的,如下图所示.它十分适合展示数据. ...
- include指令和<jsp:include>标准动作
利用JSP的包含机制,可以有效的避免重复,把可重用的部分独立出去,使用include把它们包含到当前文件.JSP有两种包含机制:include指令和<jsp:include>标准动作. 1 ...
- [安卓]The Google Android Stack
- Android 自定义属性
values新建一个attrs.xml<resource> <declare-styleable name = "MyTextView"> &l ...
- 【python练习】截取网页里最新的新闻
需求: 在下面这个网页,抓取最新的新闻,按天划分. http://blog.eastmoney.com/13102551638/bloglist_0_1.html 实现方法1:使用递归 import ...
- php访问数据库思维导图