周赛-Integration of Polynomial 分类: 比赛 2015-08-02 08:40 10人阅读 评论(0) 收藏
Integration of Polynomial
Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others)
Submit Statistic Next Problem
Problem Description
Suppose there are a polynomial which has n nonzero terms, please print the integration polynomial of the given polynomial.
The polynomial will be given in the following way, and you should print the result in the same way:
k[1] e[1] k[2] e[2] … k[n] e[n]
where k[i] and e[i] respectively represent the coefficients and exponents of nonzero terms, and satisfies e[1] < e[2] < … < e[n].
Note:
Suppose that the constant term of the integration polynomial is 0.
If one coefficient of the integration polynomial is an integer, print it directly.
If one coefficient of the integration polynomial is not an integer, please print it by using fraction a/b which satisfies that a is coprime to b.
Input
There are multiple cases.
For each case, the first line contains one integer n, representing the number of nonzero terms.
The second line contains 2*n integers, representing k[1], e[1], k[2], e[2], …, k[n], e[n]。
1 ≤ n ≤ 1000
-1000 ≤ k[i] ≤ 1000, k[i] != 0, 1 ≤ i ≤ n
0 ≤ e[i] ≤ 1000, 1 ≤ i ≤ n
Output
Print the integration polynomial in one line with the same format as the input.
Notice that no extra space is allowed at the end of each line.
Sample Input
3
1 0 3 2 2 4
Sample Output
1 1 1 3 2/5 5
Hint
f(x) = 1 + 3x2 + 2x4
After integrating we get: ∫f(x)dx = x + x3 + (2/5)x5
数学的不定积分加GCD
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <list>
#include <algorithm>
#define LL long long
#define RR freopen("output.txt","r",stdoin)
#define WW freopen("input.txt","w",stdout)
using namespace std;
const int MAX = 100100;
const int MOD = 1000000007;
int k[1100],e[1100];
int num[1100];
int GCD(int a,int b)
{
return b==0?a:GCD(b,a%b);
}
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(num,0,sizeof(num));
for(int i=0;i<n;i++)
{
scanf("%d %d",&k[i],&e[i]);
e[i]++;
if(k[i]%e[i]==0)
{
k[i]/=e[i];
}
else
{
num[i]=e[i];
int ans=GCD(abs(k[i]),num[i]);
k[i]/=ans;
num[i]/=ans;
}
}
for(int i=0;i<n;i++)
{
if(i)
{
printf(" ");
}
if(num[i])
{
printf("%d/%d %d",k[i],num[i],e[i]);
}
else
{
printf("%d %d",k[i],e[i]);
}
}
printf("\n");
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
周赛-Integration of Polynomial 分类: 比赛 2015-08-02 08:40 10人阅读 评论(0) 收藏的更多相关文章
- Tautology 分类: POJ 2015-06-28 18:40 10人阅读 评论(0) 收藏
Tautology Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10428 Accepted: 3959 Descri ...
- Monthly Expense(二分) 分类: 二分查找 2015-06-06 00:31 10人阅读 评论(0) 收藏
Description Farmer John is an astounding accounting wizard and has realized he might run out of mone ...
- 灰度世界算法(Gray World Algorithm) 分类: 图像处理 Matlab 2014-12-07 18:40 874人阅读 评论(0) 收藏
人的视觉系统具有颜色恒常性,能从变化的光照环境和成像条件下获取物体表面颜色的不变特性,但成像设备不具有这样的调节功能, 不同的光照环境会导致采集的图像颜色与真实颜色存在一定程度的偏差,需要选择合适的颜 ...
- Hiking 分类: 比赛 HDU 函数 2015-08-09 21:24 3人阅读 评论(0) 收藏
Hiking Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total Subm ...
- 第十二届浙江省大学生程序设计大赛-May Day Holiday 分类: 比赛 2015-06-26 14:33 10人阅读 评论(0) 收藏
May Day Holiday Time Limit: 2 Seconds Memory Limit: 65536 KB As a university advocating self-learnin ...
- Task schedule 分类: 比赛 HDU 查找 2015-08-08 16:00 2人阅读 评论(0) 收藏
Task schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- LightOJ1002 分类: 比赛 最短路 2015-08-08 15:57 15人阅读 评论(0) 收藏
I am going to my home. There are many cities and many bi-directional roads between them. The cities ...
- 第十二届浙江省大学生程序设计大赛-Capture the Flag 分类: 比赛 2015-06-26 14:35 10人阅读 评论(0) 收藏
Capture the Flag Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge In computer security, Ca ...
- 山东理工大学第七届ACM校赛-飞花的线代 分类: 比赛 2015-06-26 10:29 10人阅读 评论(0) 收藏
飞花的线代 Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 飞花壕的线代一直非常的壕(好),线代考试每次都是全班第一.一次,飞花壕在预习 ...
随机推荐
- 解决多线程调用sql存储过程问题
场景: 我们程序现在改成多线程了,我现在需要把临时表中的数据给插入到TABLE_M中,但这时候可能其他的线程也在插入,我就不能用之前我们的方案了(select max(oid) from Tuning ...
- IOS 设备参数
Iphone,Ipad,ITouch 各个型号参数对比
- .NET: WPF DependencyProperty
DependencyProperty and DependencyObject is the core of WPF data binding. We can use this two class t ...
- HDU 4512 吉哥系列故事——完美队形(LCIS)
Problem Description 吉哥这几天对队形比较感兴趣. 有一天,有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成一 ...
- ssh & display
在Windows下用ssh连接服务器的话putty是一个小巧而且实用的工具,如果想要图形界面,可以使用X工具配合putty. 或者直接使用xmanager enterprise,非 常方便. 如果在U ...
- 文本挖掘之特征选择(python 实现)
机器学习算法的空间.时间复杂度依赖于输入数据的规模,维度规约(Dimensionality reduction)则是一种被用于降低输入数据维数的方法.维度规约可以分为两类: 特征选择(feature ...
- SQL 中逻辑运算符的优先级
三个逻辑运算符: NOT AND OR 它们的优先级依次降低(跟多数的高级程序设计语言的优先级顺序一致) 如果要提升某部分的优先级,可以使用半角括号实现 (这点也跟多数高级程序设计语言一致)
- 衣明志是个SB
面试碰到衣明志,问了些傻逼问题,尼玛就是一不折不扣的蠢驴. 这个人太能装了,而且水平也不咋地.
- sp_addlinkedserver 方法应用
EXEC sp_addlinkedserver @server='DBVIP',--被访问的服务器别名 @srvproduct='', @provider='SQLO ...
- 初学android的第一个习作
首发:个人博客,更新&纠错&回复 项目源码在这里,因为github上传速度太差,传到了oschina的git托管上. 1.项目结构及技术点 主页面使用FragmentTabHost,5 ...