在matlab中做Regularized logistic regression

原理:

我的代码:

function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters. % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0;
grad = zeros(size(theta)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta h = sigmoid(X*theta);
theta2=[0;theta(2:end)]; J_partial = sum((-y).*log(h)+(y-1).*log(1-h))./m;
J_regularization= (lambda/(2*m)).*sum(theta2.^2);
J = J_partial+J_regularization; grad_partial = sum((h-y).*X)/m;
grad_regularization = lambda.*theta2./m;
grad = grad_partial+grad_regularization; % ============================================================= end

运行结果:

标黄的与下面的预期对比发现不同

尝试删去

+grad_regularization

.rtcContent { padding: 30px }
.lineNode { font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal }

部分结果符合预期,部分不符合

尝试大佬代码

%Hypotheses
hx = sigmoid(X * theta);
%%The cost without regularization
J_partial = (-y' * log(hx) - (1 - y)' * log(1 - hx)) ./ m;
%%Regularization Cost Added
J_regularization = (lambda/(2*m)) * sum(theta(2:end).^2);
%%Cost when we add regularization
J = J_partial + J_regularization;
%Grad without regularization
grad_partial = (1/m) * (X' * (hx -y));
%%Grad Cost Added
grad_regularization = (lambda/m) .* theta(2:end);
grad_regularization = [0; grad_regularization];
grad = grad_partial + grad_regularization;

完全成功!?我不李姐……

观察大佬代码发现,我和大佬的区别在于:

最开始的theta向量和计算J(theta)和grad时候使用sum的数目

故尝试修改和大佬数目一样多的sum

    h = sigmoid(X*theta);
theta2=[0;theta(2:end)]; J_partial = (-y).*log(h)+(y-1).*log(1-h)./m;
J_regularization= (lambda/(2*m)).*sum(theta2.^2);
J = J_partial+J_regularization; grad_partial = (h-y).*X/m;
grad_regularization = lambda.*theta2./m;
grad = grad_partial+grad_regularization;

结果:incompatible不兼容

文档对该错误的解释如下

事已至此,只好向大佬更近一步!

    h = sigmoid(X*theta);

    J_partial = (-y).*log(h)+(y-1).*log(1-h)./m;
J_regularization= (lambda/(2*m)).*sum(theta(2:end).^2);
J = J_partial+J_regularization; grad_partial = (h-y).*X/m;
grad_regularization = lambda.*theta(2:end)./m;
grad_regularization2=[0;grad_regularization]; grad = grad_partial+grad_regularization2;

为什么还是不兼容?

到底哪里出了问题?

最后,尝试离大佬更近一步,把grad_partial里的(h-y).*X/m变成了(1/m) * (X' * (h -y))

    h = sigmoid(X*theta);

    J_partial = (1/m).*((-y).*log(h)+(y-1).*log(1-h));
J_regularization= (lambda/(2*m)).*sum(theta(2:end).^2);
J = J_partial+J_regularization; grad_partial = (1/m) * (X' * (h -y));
grad_regularization = (lambda/m).*theta(2:end);
grad_regularization = [0; grad_regularization];
grad = grad_partial+ grad_regularization;

舒服了!

但,等等,上面怎么那么多行,数值还不对?看来不能完全靠大佬,还得自己改!!!

    h = sigmoid(X*theta);

    J_partial = (1/m).*sum((-y).*log(h)+(y-1).*log(1-h));
J_regularization= (lambda/(2*m)).*sum(theta(2:end).^2);
J = J_partial+J_regularization; grad_partial = (1/m) * (X' * (h -y));
grad_regularization = (lambda/m).*theta(2:end);
grad_regularization = [0; grad_regularization];
grad = grad_partial+ grad_regularization;

最终,得到了满意的答案

以及

 总结一下出现的问题

01不兼容,就像上面说明的那样,行列不匹配

(解决方法:查看有无sum、是值还是array,把系数往前放,修改两数相乘的顺序)

02加入grad_regularization后,grad(1,5)的后四项都出现了问题(很神奇地值相等),

一旦去掉又与正确值有小范围差距(缺少grad_regularization导致的)

说明grad_regularization存在问题

而如果一开始就将theta变为第一行元素是0的矩阵,很容易出现不兼容的问题

大佬的代码提示我们特殊情况可以分出来特殊处理,也就是:

在计算J(θ)不使用矩阵,而是用除0外、后面的θ直接产出需要的值

在计算grad时,由于输出也是矩阵,所以可以创建一个含0和其他θ的矩阵

这样既可以避免不兼容,也可以得出正确的结果

最终的部分code如下

    h = sigmoid(X*theta);

    J_partial = (1/m).*sum((-y).*log(h)+(y-1).*log(1-h));
J_regularization= (lambda/(2*m)).*sum(theta(2:end).^2);
J = J_partial+J_regularization; grad_partial = (1/m) * (X' * (h -y));
grad_regularization = (lambda/m).*theta(2:end);
grad_regularization = [0; grad_regularization];
grad = grad_partial+ grad_regularization;

Logistic regression中regularization失败的解决方法探索(文末附解决后code)的更多相关文章

  1. Machine Learning - 第3周(Logistic Regression、Regularization)

    Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...

  2. logistic regression中的cost function选择

    一般的线性回归使用的cost function为: 但由于logistic function: 本身非凸函数(convex function), 如果直接使用线性回归的cost function的话, ...

  3. Windows 共享无线上网 无法启动ICS服务解决方法(WIN7 ICS服务启动后停止)

    Windows 共享无线上网 无法启动ICS服务解决方法(WIN7 ICS服务启动后停止) ICS 即Internet Connection Sharing,internet连接共享,可以使局域网上其 ...

  4. 斯坦福机器学习视频笔记 Week3 逻辑回归与正则化 Logistic Regression and Regularization

    我们将讨论逻辑回归. 逻辑回归是一种将数据分类为离散结果的方法. 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件. 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost fun ...

  5. Andrew Ng Machine Learning 专题【Logistic Regression & Regularization】

    此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...

  6. week3编程作业: Logistic Regression中一些难点的解读

    %% ============ Part : Compute Cost and Gradient ============ % In this part of the exercise, you wi ...

  7. 在IE浏览器中执行OpenFlashChart的reload方法时无法刷新的解决方法

    由于项目需求,需要在网页上利用图表展示相关数据的统计信息,采用了OpenFlashChart技术.OpenFlashChart是一款开源的以Flash和Javascript为技术基础的免费图表,用它能 ...

  8. (蓝牙)网络编程中,使用InputStream read方法读取数据阻塞的解决方法

    问题如题,这个问题困扰了我好几天,今天终于解决了,感谢[1]. 首先,我要做的是android手机和电脑进行蓝牙通信,android发一句话,电脑端程序至少就要做到接受到那句话.android端发送信 ...

  9. blocked because of many connection errors; unblock with 'mysqladmin flush-hosts;MySQL在远程访问时非常慢的解决方法;MySql链接慢的解决方法

     一:服务器异常:Host 'xx.xxx.xx.xxx' is blocked because of many connection errors; unblock with 'mysqladmin ...

随机推荐

  1. C 如何将输出的地址转化为十进制数

    •需求 这两天在看内存对齐的相关问题,因此产生了一个,如何将地址转换为十进制数? 对于如下程序: void func() { int a = 10; printf("a 的地址为:%p\n& ...

  2. 使用MariaDB backup恢复主从

    安装 yum install MariaDB-backup 备份命令 工具需要直接操作数据目录,需要在数据库服务器上执行 mariabackup --backup --target-dir=/data ...

  3. SpringMVC前后端分离交互传参详细教程

    温故而知新,本文为一时兴起写出,如有错误还请指正 本文后台基于SpringBoot2.5.6编写,前端基于Vue2 + axios和微信小程序JS版分别编写进行联调测试,用于理解前后端分离式开发的交互 ...

  4. 后门及持久化访问3----进程注入之AppInit_DLLs注册表项

    进程注入之AppInit_DLLs注册表项 User32.dll被加载到进程时,会获取AppInit_DLLs注册表项,若有值,则调用LoadLibrary() API加载用户DLL.只会影响加载了u ...

  5. python 发送POST请求

    #博客地址:https://blog.csdn.net/qq_36374896 import urllib.request import urllib.parse url = "http:/ ...

  6. 【Vulnhub】LazySysAdmin

    下载链接 https://download.vulnhub.com/lazysysadmin/Lazysysadmin.zip 运行环境 Virtualbox Vnware Workstation p ...

  7. Prometheusbu部署使用-1

    Prometheus+grafana部署使用 主机列表: 192.168.161.130 : Prometheus 192.168.161.128 : node-1 192.168.161.129 : ...

  8. JdbcTemplate?

    JdbcTemplate 类提供了很多便利的方法解决诸如把数据库数据转变成基本数据类型或对象,执行写好的或可调用的数据库操作语句,提供自定义的数据错误处理.

  9. 三、MyCat主要配置介绍

    一.配置文件 1.server.xml Mycat的配置文件,设置账号.参数等2.schema.xml Mycat对应的物理数据库和数据库表的配置3.rule.xml Mycat分片(分库分表)规则 ...

  10. Redis List Type

    Redis列表的操作命令和对应的api如下: lpush/rpush [list] [value] JedisAPI:public Long lpush/rpush(final String key, ...