ES的索引结构与算法解析
作者:京东物流 李洪吉
提到ES,大多数爱好者想到的都是搜索引擎,但是明确一点,ES不等同于搜索引擎。不管是谷歌、百度、必应、搜狗为代表的自然语言处理(NLP)、爬虫、网页处理、大数据处理的全文搜索引擎,还是有明确搜索目的的搜索行为,如各大电商网站、OA、站内搜索、视频网站的垂直搜索引擎,他们或多或少都使用到了ES。
作为搜索引擎的一部分,ES自然具有速度快、结果准确、结果丰富等特点,那么ES是如何达到“搜索引擎”级别的查询效率呢?首先是索引,其次是压缩算法,接下来我们就一起了解下ES的索引结构和压缩算法
1 结构
1.1 Mysql
Mysql下的data目录存放的文件就是mysql相关数据,mysql文件夹对应的就是数据库mysql。
其中表columns_priv对应了3个文件:columns_priv.frm、columns_priv.MYD、columns_priv.MYI。
.frm:表结构;.MYD:myisam存储引擎原数据;.MYI:myisam存储引擎索引;.ibd:innodb存储引擎数据
1.2 Elasticsearch
cfe为索引文,cfs 为数据文件,cfe文件保存Lucene各文件在.cfs文件的位置信息
cfs、cfe 在segment还很小的时候,将segment的所有文件都存在在cfs中,在cfs逐渐变大时,大小超过shard的10%,则会拆分为其他文件,如tim、dvd、fdt等文件
1.3 存储结构
倒排索引结构分为倒排表、词项字典、词项索引
倒排表包含某个词项的所有id的数据存储了在.doc文件中
词项字典包含了index field的所有经过处理之后的词项数据,最终存储在.tim文件中
1.4 结构对比
我们以某商城的手机为例,左侧为es倒排索引结构,右侧为原始数据。左侧图示只是为了展示倒排索引结构,并不是说es中倒排表就是简单的数组
以上面结构对比示例图为例,假如共有10亿条数据需要存储在ES中(上图右),分词后存储的倒排表(上图左)大概包含分词term以及对应的id数组等,在10亿条数据中,分词“小米”相关的数据有100万条,也就是说分词“小米”对应的数组Posting List长度是100万
id是int类型的有序主键,分词“小米”在数组Posting List中100万int类型数字总长度=100万每个int占4字节=400万Byte≈4MB。1个分词占4MB空间,假如10亿条数据有500万个分词,总空间=4MB500万=2千万MB,磁盘空间直接爆炸
2 算法
分词对应的数组Posting List实际就是一个个有序数组,而有序数值数组是比较容易进行压缩处理的,而且一般来说压缩效益也不错,如果能对其进行压缩是能够大大节约空间资源的
ES中倒排索引的压缩算法主要有FOR算法(Frame Of Reference)和RBM算法(RoaringBitMap)
2.1 FOR
FOR算法的核心思想是用减法来削减数值大小,从而达到降低空间存储。 假设V(n)表示数组中第n个字段的值,那么经过FOR算法压缩的数值V(n)=V(n)-V(n-1)。也就是说存储的是后一位减去前一位的差值。存储是也不再按照int来计算了,而是看这个数组的最大值需要占用多少bit来计算
我们按照差值计算的方式来保存数据,初始值为1,2与1的差值为1,3与2的差值为1……最终我们就将原始Posting List数据转化为100万个1,每个1我们可以用1bit来记录,总空间=1bit100万=100万bit,相比原有400万Byte=3200bit,空间压缩了32倍
在实际生产中,不可能出现一个term的Posting List是这种差值均为1的情况,所以我们以通用示例举例。假如原数据为[73,300,302,332,343,372],数组中6个数字占据总空间为24字节。按照差值方式记录,数组转化为[73,227,2,30,11,29],最大数字为227,大于2的7次方128,小于2的8次方256,所以每个数字可以使用8bit即1Byte来保存,占据总空间为1Byte*6 + 1Byte=7Byte
在此基础上,我们将差值数组按照密集度划分为[73,227]和[2,30,11,29],其中[73,227]中最大值227介于2的7次方和2的8次方之间,所以用8bit=1Byte作为切割分段,[2,30,11,29]中最大数30介于2的4次方和2的5次方之间,所以用5bit作为切割分段。
数组[73,227]占据总空间为8bit2个=16bit=2Byte
数组[2,30,11,29]占据总空间为5bit4个=20bit=3Byte
为什么20bit=3Byte呢?因为8bit=1Byte,小于8bit也会占据1个字节空间,所以17bit到24bit均为3Byte
所以,最终占据总空间=1+2+1+3=7Byte
疑问一:既然原数组[73,300,302,332,343,372]要按照密集度拆分为[73,227]和[2,30,11,29]两个数组,那为什么不继续往下拆分,直接拆分到每个数字是一个数组,这样使用bit记录时占据总空间会更少?
答:如果继续拆分数组,空间确实会使用更少,但是,之前我们提到搜索引擎速度快的方式有两种:高效的压缩算法和快速的编码解码速度,单个数字存储确实压缩了空间,但是我们无法再通过解码的方式将源数据还原
疑问二:为什么源数据使用差值记录占据6Byte,拆分数组后占据7Byte,拆分后占据空间不变,有时候甚至会变大,为什么?
答:数据量小的情况下确实会出现该情况,因为我们需要拆分数组并记录拆分数组的长度(如上面示例中的8bit和5bit),在原数据存储空间基础上还要存储拆分长度,所以数据量小的情况下会出现比直接存储占据空间大的情况。但是不管是搜索引擎还是Elasticsearch更多处理的是海量数据,数据量越多,差值数组拆分的方式节省空间越明显
2.2 RBM
我们已经了解了FOR压缩算法,算法核心是将PostingList按照差值密集度转化成两个差值数组。在这里我们要考虑一种情况就是:在大数据中,10亿条数据分词500万个,如果分词“小米”所在PostList比较分散且差值很大,此时使用FOR算法效果就会大打折扣。所以稀疏的数组,不适合使用FOR算法
在这里我们以[1000,62101,131385,132052,191173,196658]为例,如果按照FOR算法,转化成的差值数组为[1000,61101,69284,667,59121,5485]密集度很低。我们采用RBM算法
源数据PostingList是由int类型组成的数组,int类型=4Byte=32bit,最大值=2的32次方-1=4294967295≈43亿。当数据较大且稀疏时,我们将32bit拆分为16bit和16bit,16bit最大值=65535,前16bit存放商,后16bit存放余数,所以商和余数都不会超过65535.我们将源数组的值除以65536,得到的商和余数分别存放在前16bit和后16bit。
以数字196658为例,转化为2进制,前16位=3,后16位=50
得到的结果以K-V存放。Key最大值为16bit,所以以short[]数组存放,Value以Container存放。
由于源数组为有序数组,所以按照高低16位转化后,商和余数都是从小到大排列
通过看Container源码,我们可以看到Container有3种:ArrayContainer、BitmapContainer、RunContainer。
- ArrayContainer本质为集合,所以随着数组中数量越多,占用空间越多,呈正向增长。
当数组种数量为4096时,占据总空间=4096个16bit(即2Byte)1024=8KB
当数组种数量为65536时,占据总空间=65536个16bit(即2Byte)1024=128KB
- BitmapContainer位图,核心就是将原有存储数值转化成该数值在哪个位置上存在
由于余数最大值为65535,所以我们需要65536位位图,数值是多少,在位图上对应的位置就是多少。数值等于4096,则位图上4096位值为1;数值等于65535,则位图上65535位值为1。每个位置上的数都占用8KB空间(8KB=65536bit)
- RunContainer用法相对狭隘,这种类型是Lucene 5之后新增的类型,主要应用在连续数字的存储商,比如倒排表中存储的数组为 [1,2,3…100W] 这样的连续数组,如果使用RunContainer,只需存储开头和结尾两个数字:1和100W,即占用8个字节。这种存储方式的优缺点都很明显,它严重收到数字连续性的影响,连续的数字越多,它存储的效率就越高
- 如果数组是如下形式 [1,2,3,4,5,100,101,102,999,1000,1001] 就会被拆分为三段:[1,5],[100,102],[999,1001]
至于每次存储采用什么容器,需要进行一下判定,比如ArrayContainer,当存储的元素少于4096个时,他会比BitmapContainer占用更少空间,而当大于4096个元素时,采用ArrayContainer所需要的空间就会大于8kb,那么采用BitmapContainer就会占用更少空间
3 总结
ES在处理海量数据时通过其独到的结构和压缩算法,将索引效率尽可能的提升。虽然在实际业务处理中我们极少遇到海量数据处理的情况,但是通过了解ES的原理,能够帮我们开阔下视野,了解数字之美,算法之美。
ES的索引结构与算法解析的更多相关文章
- MYSQL索引结构原理、性能分析与优化
[转]MYSQL索引结构原理.性能分析与优化 第一部分:基础知识 索引 官方介绍索引是帮助MySQL高效获取数据的数据结构.笔者理解索引相当于一本书的目录,通过目录就知道要的资料在哪里, 不用一页一页 ...
- 由浅入深探究mysql索引结构原理、性能分析与优化 转
第一部分:基础知识 第二部分:MYISAM和INNODB索引结构 1. 简单介绍B-tree B+ tree树 2. MyisAM索引结构 3. Annode索引结构 4. MyisAM索引与Inno ...
- 由浅入深探究mysql索引结构原理、性能分析与优化
摘要: 第一部分:基础知识 第二部分:MYISAM和INNODB索引结构 1.简单介绍B-tree B+ tree树 2.MyisAM索引结构 3.Annode索引结构 4.MyisAM索引与Inno ...
- python常见排序算法解析
python——常见排序算法解析 算法是程序员的灵魂. 下面的博文是我整理的感觉还不错的算法实现 原理的理解是最重要的,我会常回来看看,并坚持每天刷leetcode 本篇主要实现九(八)大排序算法 ...
- DeepFM算法解析及Python实现
1. DeepFM算法的提出 由于DeepFM算法有效的结合了因子分解机与神经网络在特征学习中的优点:同时提取到低阶组合特征与高阶组合特征,所以越来越被广泛使用. 在DeepFM中,FM算法负责对一阶 ...
- GBDT+LR算法解析及Python实现
1. GBDT + LR 是什么 本质上GBDT+LR是一种具有stacking思想的二分类器模型,所以可以用来解决二分类问题.这个方法出自于Facebook 2014年的论文 Practical L ...
- 【转】由浅入深探究mysql索引结构原理、性能分析与优化
摘要: 第一部分:基础知识 第二部分:MYISAM和INNODB索引结构 1.简单介绍B-tree B+ tree树 2.MyisAM索引结构 3.Annode索引结构 4.MyisAM索引与Inno ...
- 区块链~Merkle Tree(默克尔树)算法解析~转载
转载~Merkle Tree(默克尔树)算法解析 /*最近在看Ethereum,其中一个重要的概念是Merkle Tree,以前从来没有听说过,所以查了些资料,学习了Merkle Tree的知识,因为 ...
- MySQL索引----数据结构及算法原理
摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...
- ES读写索引内幕分析
一.简介 ES中的索引都进行分片,每个分片都会保存多个副本.这些副本称为复制组,在添加或删除索引时必须同步副本.如果不这样,从不同的副本中读取的索引可能截然不同.保持分片副本同步并从中提供读取的过程被 ...
随机推荐
- 运行python脚本报错SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX escape
运行python脚本报错 SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: ...
- beamforming源码标记
p:各阵元的声压信号矩阵 R:接收数据的自协方差矩阵 Pcbf:交叉谱矩阵
- vue打包记录
这里的确是css以及js文件的路径问题,但解决时并不需要手动改路径或者加一段判断去修改,最方便的办法时在项目打包前的vue.config.js里面将publicPath属性添加或者修改为 public ...
- ARFoundation在2019.2之后无法打包的问题
打包提示错误gradle无法完成打包.解决方案 转到首选项>外部工具> Android> Gradle ,然后将自定义Gradle设置为Gradle 5.6.4或更高版本.请参阅Gr ...
- String当中的intern()
public class String001 { public static void main(String[] args) { String s1 = "hello"; Str ...
- Repeater 绑定数据如何根据数据列的内容排序
可指定Repeater的数据源 从数据库查询时直接排序,而后绑定数据这样
- Linux开发——spi总线学习
1 spi总线协议简介 1.1 基本概念 SPI(Serial pe)
- Python学习笔记--SQL数据
SQL 本人受到Java的影响,数据库的话,就不按照教程走了,我就直接使用的是Navicat软件的数据库啦! SQL支持注释: 两种单行注释(-- 和# ),和一种多行注释(/* */) 基础的使用语 ...
- Dash 2.9.0版本重磅新功能一览
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/dash-master 大家好我是费老师,就在昨晚,Dash框架发布了其2.9.0版本更新,在一众更新 ...
- Rainbond PipeLine插件部署与springboot应用部署实践
前言:上一篇介绍额rainbond单机部署+单个节点的k8s环境搭建,本篇介绍rainbond5.12新增的pipeline插件的使用 1.Pipeline插件的安装 安装gitlab与gitlab- ...