\(\text{Solution}\)

这个问题是不好判断的

考虑简单点的,\((1,1)\) 到 \((h,w)\) 是否连通

那么只要在最外围一圈 #(显然一些位置不能加),判断 \((h+1,n)\) 和 \((0,w+1)\) 是否能通过 # 八连通即可

如果是双连通呢?只要这两点所在连通块不能通过只加一个 # 就连通

看起来很不可做的题猜测一些简单结论就很可做了

判断否就考虑加一个 # 就连通的位置,这个 # 必然是连接了两个连通块

考虑这两个连通块的类别,一是新填的两个 #,O(k^2) 枚举即可

二是连接了原图中的两个连通块,这两个连通块又通过新的 # 连通了 \((h+1,n)\) 或 \((0,w+1)\)

于是把所有这样的连通块记录下来,判断两两是否在原图中只加一个 # 就连通

三是一个新 # 和原图中的连通块,发现处理可以和二一样

判断两连通块是否只加一个 # 就连通可以用哈希表预处理

一次询问是临时的,可撤销并查集即可

\(\text{Code}\)

#include <bits/stdc++.h>
#define IN inline
#define eb emplace_back
using namespace std; int n, m, q, id[1005][1005];
char str[1005], mp[1005][1005]; const int N = 1e6 + 5e3;
struct DSU {
int fa[N], sz[N], top;
struct Edge{int u, v;}stk[N];
IN int find(int x){while (fa[x] != x) x = fa[x]; return x;}
IN void merge(int x, int y) {
int u = find(x), v = find(y);
if (u == v) return; if (sz[u] > sz[v]) swap(u, v);
fa[u] = v, sz[v] += sz[u], stk[++top] = Edge{u, v};
}
IN void clear(int lst) {
for(int u, v; top != lst; --top)
u = stk[top].u, v = stk[top].v, sz[v] -= sz[u], fa[u] = u;
}
}T1, T2; int fx[9][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}, {1, 1}, {-1, -1}, {1, -1}, {-1, 1}};
unordered_map<int, int> hs[N]; void dfs(int x, int y, int d, int p) {
if ((x == 2 && y == 2) || (x == n - 1 && y == m - 1)) return;
if (mp[x][y] == '#') hs[p][T1.find(id[x][y])] = 1;
if (!d) return;
for(int k = 0; k < 8; k++) {
int xx = x + fx[k][0], yy = y + fx[k][1];
if (id[xx][yy]) dfs(xx, yy, d - 1, p);
}
} void Init() {
scanf("%d%d%d", &n, &m, &q), n += 2, m += 2;
for(int i = 2; i < n; i++) scanf("%s", mp[i] + 2);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) id[i][j] = (i - 1) * m + j;
for(int j = 1; j <= m; j++) mp[1][j] = mp[n][j] = '#';
for(int i = 1; i <= n; i++) mp[i][1] = mp[i][m] = '#';
mp[1][1] = mp[1][2] = mp[2][1] = mp[n - 1][m] = mp[n][m - 1] = mp[n][m] = '.';
for(int i = 1; i <= n * m; i++) T1.fa[i] = i, T1.sz[i] = 1;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) if (mp[i][j] == '#')
for(int k = 0; k < 8; k++) {
int x = i + fx[k][0], y = j + fx[k][1];
if (id[x][y] && mp[x][y] == '#') T1.merge(id[i][j], id[x][y]);
}
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) dfs(i, j, 2, T1.find(id[i][j]));
for(int i = 1; i <= n * m; i++) T2.fa[i] = T1.fa[i], T2.sz[i] = T1.sz[i];
} int X[15], Y[15]; int main() {
Init();
for(; q; --q) {
int K; scanf("%d", &K);
for(int i = 1; i <= K; i++) scanf("%d%d", &X[i], &Y[i]), mp[++X[i]][++Y[i]] = '#';
int lst = T2.top;
for(int i = 1; i <= K; i++)
for(int k = 0; k < 8; k++) {
int x = X[i] + fx[k][0], y = Y[i] + fx[k][1];
if (id[x][y] && mp[x][y] == '#') T2.merge(id[X[i]][Y[i]], id[x][y]);
}
int flag = 0;
for(int i = 1; i <= K && !flag; i++)
for(int j = 1; j <= K; j++) if (max(abs(X[i] - X[j]), abs(Y[i] - Y[j])) <= 2) {
if (T2.find(id[X[i]][Y[i]]) == T2.find(id[1][m]) && T2.find(id[X[j]][Y[j]]) == T2.find(id[n][1])) {
flag = 1; break;
}
}
vector<int> Vr, Vl; Vr.eb(T1.find(id[1][m])), Vl.eb(T1.find(id[n][1]));
for(int i = 1; i <= K; i++) {
for(int k = 0; k <= 8; k++) {
int x = X[i] + fx[k][0], y = Y[i] + fx[k][1];
if (id[x][y] && T2.find(id[x][y]) == T2.find(id[1][m])) Vr.eb(T1.find(id[x][y]));
if (id[x][y] && T2.find(id[x][y]) == T2.find(id[n][1])) Vl.eb(T1.find(id[x][y]));
}
}
for(auto kr : Vr) for(auto kl : Vl)
if (hs[kr].find(kl) != hs[kr].end() || hs[kl].find(kr) != hs[kl].end()){flag = 1; break;}
if (!flag) puts("YES"); else puts("NO"); fflush(stdout);
T2.clear(lst); for(int i = 1; i <= K; i++) mp[X[i]][Y[i]] = '.';
}
}

CF750H New Year and Snowy Grid的更多相关文章

  1. ZJOI2018游记Round1

    广告 ZJOI2018Round2游记 All Falls Down 非常感谢学弟学妹们捧场游记虽然这是一篇假游记 ZJOI Round1今天正式落下帷幕.在这过去的三天里遇到了很多朋友,见识了很多有 ...

  2. ExtJS 4.2 Grid组件的单元格合并

    ExtJS 4.2 Grid组件本身并没有提供单元格合并功能,需要自己实现这个功能. 目录 1. 原理 2. 多列合并 3. 代码与在线演示 1. 原理 1.1 HTML代码分析 首先创建一个Grid ...

  3. WPF中Grid实现网格,表格样式通用类

    /// <summary> /// 给Grid添加边框线 /// </summary> /// <param name="grid"></ ...

  4. 在 Windows Phone 中,为 Grid 添加 Tilt 效果

    在 Windows Phone 中,Tilt 效果是比较经典的效果,我们可以很简单的为按钮等控件添加这样的效果(使用 Windows Phone Toolkit 的Tilt 效果),但是,如果我们想要 ...

  5. wpf 列表、菜单 收起与展开,通过Grid DoubleAnimation或者Expander实现

    菜单收缩有很多种方法具体如何实现还是看个人想法: 第一种通过后台控制收起与展开: 效果图: 代码 : <Grid> <Grid.ColumnDefinitions> <C ...

  6. Sencha ExtJS 6 Widget Grid 入门

    最近由于业务需要,研究了一下Sencha ExtJS 6 ,虽然UI和性能上据相关资料说都有提升,但是用起来确实不太顺手,而且用Sencha cmd工具进行测试和发布,很多内部细节都是隐藏的,出了问题 ...

  7. WPF CheckBox样式 ScrollViewer样式 WrapPanel、StackPanel、Grid布局

    本节讲述布局,顺带加点样式给大家看看~单纯学布局,肯定是枯燥的~哈哈 那如上界面,该如何设计呢? 1.一些布局元素经常用到.Grid StackPanel Canvas WrapPanel等.如上这种 ...

  8. [转]ExtJS Grid 分页时保持选中的简单实现方法

    原文地址 :http://www.qeefee.com/article/ext-grid-keep-paging-selection ExtJS中经常要用到分页和选择,但是当选择遇到分页的时候,杯具就 ...

  9. [转]extjs grid的Ext.grid.CheckboxSelectionModel默认选中解决方法

    原文地址:http://379548695.iteye.com/blog/1167234 grid的复选框定义如下:   var sm = new Ext.grid.CheckboxSelection ...

  10. EXTJS中grid的数据特殊显示,不同窗口的数据传递

    //EXTJS中grid的数据特殊显示renderer : function(value, metaData, record, rowIndex, colIndex, store, view) { v ...

随机推荐

  1. Java网络编程:Socket 通信 2

    client----发送数据(输出流)------------(输入)-[管道流处理数据]-(输出)------接收数据(输入流)------server 文件传输: 客户端: 创建Socket连接对 ...

  2. 自动注册实体类到EntityFramework Core上下文,并适配ABP及ABP VNext

    继上篇文章(EF Core懒人小技巧之拒绝DbSet)之后,最近笔者把这个小功能单独封装成一个扩展方法并开源,欢迎交流和Star~ GitHub: EntityFrameworkCore.Extens ...

  3. <四>虚函数 静态绑定 动态绑定

    代码1 class Base { public: Base(int data=10):ma(data){ cout<<"Base()"<<endl; } v ...

  4. Flink同步Kafka数据到ClickHouse分布式表

    公众号文章都在个人博客网站:https://www.ikeguang.com/ 同步,欢迎访问. 业务需要一种OLAP引擎,可以做到实时写入存储和查询计算功能,提供高效.稳健的实时数据服务,最终决定C ...

  5. 【SQL】窗口函数:求数据组内累计值和累计百分比

    〇.概述 1.所需资料 窗口函数实现组内百分比.累计值.累计百分比:https://blog.csdn.net/weixin_39751959/article/details/88828922 2.背 ...

  6. 【面试题总结】JVM02:JVM参数调优、类加载机制

    四.JVM参数调优 1.调优工具 (1)jvisualvm:jdk提供的性能分析工具,可以监控java进程,对dump文件分析:查看应用程序的详细信息,针对不同插件,实现监控GC过程.内存.进程.线程 ...

  7. python 爬取豆瓣电影评论,并进行词云展示

    python 爬取豆瓣电影评论,并进行词云展示 本文旨在提供爬取豆瓣电影<我不是药神>评论和词云展示的代码样例 1.分析URL 2.爬取前10页评论 3.进行词云展示 1.分析URL 我不 ...

  8. 使用pycharm or vscode来编写python代码?

    pycharm社区版可用于商业项目 pycharm社区版可用于商业项目,来源于官方的回答:Can I use Community Editions of JetBrains IDEs for deve ...

  9. MongoDB数据库与Python的交互

    一.缘由 这是之前学习的时候写下的基础代码,包含着MongDB数据库和Python交互的基本操作. 二.代码实现 import pymongo #连接数据库 client=pymongo.MongoC ...

  10. python中的字符串(1)

    1.大小写的转换 upper()/lower() 转成大写.upper() 转成小写.lower() 返回的是字符串 2.是否是数字 isdigit() 返回的布尔值 3.去除字符串的空白字符 str ...