并查集

并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题。一些常见的用途有:求连通子图、求最小生成树的Kruskal算法和求最近公共祖先(LCA)等。

并查集的基本操作

  • 1.初始化init
  • 2.查询find
  • 3.合并unionn
//用数组fa[]来存储每个元素的父节点
int fa[MAXN];
//一开始,我们先将它们的父节点设为自己
void init(int n)
{
for(int i=1;i<=n;i++)
fa[i]=i;
}
//查询 找到i的祖先就返回
int find(int i)
{
if(fa[i]==i) return i; //递归出口,当到达了祖先位置,就返回祖先
else
{
fa[i]=find(fa[i]); //路径压缩
return findfa[i]; //不断向上查找祖先
} }
void unionn(int i,int j)
{
int i_fa=find(i);
int j_fa=find(j);
fa[i_fa]=j_fa; //i的祖先指向j的祖先
}

亲戚

P1551 亲戚 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

题目背景

若某个家族人员过于庞 大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。

题目描述

规定:xy 是亲戚,yz 是亲戚,那么 xz 也是亲戚。如果 xy 是亲戚,那么 x 的亲戚都是 y 的亲戚,y 的亲戚也都是 x 的亲戚。

输入格式

第一行:三个整数 n,m,p,(n,m,p≤5000),分别表示有 n 个人,m* 个亲戚关系,询问 p 对亲戚关系。

以下 m 行:每行两个数 i j,表示 i 和 j 具有亲戚关系。

接下来 p 行:每行两个数 P_i,P_j,询问 P_i和 P_j 是否具有亲戚关系。

输出格式

p 行,每行一个 YesNo。表示第 i 个询问的答案为“具有”或“不具有”亲戚关系。

输入输出样例

输入 #1复制

6 5 3
1 2
1 5
3 4
5 2
1 3
1 4
2 3
5 6

输出 #1复制

Yes
Yes
No
#include<iostream>
using namespace std;
#define MAXN 20001
int fa[MAXN];
//一开始,我们先将它们的父节点设为自己
void init(int n)
{
for (int i = 1; i <= n; i++)
fa[i] = i;
}
//查询 找到i的祖先就返回
int find(int i)
{
if (fa[i] == i) return i; //递归出口,当到达了祖先位置,就返回祖先
else
{
fa[i] = find(fa[i]); //路径压缩
return fa[i]; //不断向上查找祖先
} }
void unionn(int i, int j)
{
int i_fa = find(i);
int j_fa = find(j);
fa[i_fa] = j_fa; //i的祖先指向j的祖先
} int main()
{
int n, m, x, y, q;
cin >> n;
init(n);
cin >> m;
for (int i = 0; i < m; i++)
{
cin >> x >> y;
unionn(x, y);
}
cin >> q;
for (int i = 0; i < q; i++)
{
cin >> x >> y;
if (find(x) == find(y))
cout << "Yes" << endl;
else cout << "No" << endl;
}
return 0;
}

任意点

任意点 (nowcoder.com)

题意

平面上有若干个点,从每个点出发,你可以往东南西北任意方向走,直到碰到另一个点,然后才可以改变方向。

请问至少需要加多少个点,使得点对之间互相可以到达。

输入描述

第一行一个整数n表示点数( 1 <= n <= 100)。

第二行n行,每行两个整数xi, yi表示坐标( 1 <= xi, yi <= 1000)。

y轴正方向为北,x轴正方形为东。

输出描述

输出一个整数表示最少需要加的点的数目。

解析

这个题目不难,也是一个裸的并查集,不过有一点隐晦,下面解释一下。

首先他只能撞到一个点才能停,看这个图

可以看到1234都是可以相互联系的,而5是独立出来的一个点,要是想要到达5,就要在12或者24之间加一个点,所以这个像什么,就是两个独立的连通块,这样子就很明显是一个并查集了。

这个并查集是当x相同或者y相同的时候,就可以插入在一个块里面。

#include <iostream>
using namespace std; struct point {
int x;
int y;
} p[110];
int fa[110]; int find(int x) {
if (fa[x] == x)
return x;
fa[x] = find(fa[x]);
return fa[x];
} void join(int x, int y) {
int fx = find(x);
int fy = find(y);
fa[fx] = fy;
} int main() {
int n;
cin >> n;
for (int i = 1; i <= n; ++i) {
fa[i] = i;
cin >> p[i].x >> p[i].y; //scanf("%d")
}
for (int i = 2; i <= n; ++i) {
for (int j = 1; j < i; ++j) {
if (p[i].x == p[j].x || p[i].y == p[j].y) {
join(i, j);
}
}
}
int ans = -1;
for (int i = 1; i <= n; ++i) {
if (fa[i] == i)
++ans;
}
cout << ans << endl;
return 0;
}

【ACM程序设计】并查集的更多相关文章

  1. ACM数据结构-并查集

    ACM数据结构-并查集   并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合 ...

  2. ACM: The Suspects-并查集-解题报告

    The Suspects Time Limit:1000MS Memory Limit:20000KB 64bit IO Format:%lld & %llu Description 严重急性 ...

  3. acm专题--并查集

    题目来源:http://hihocoder.com/problemset/problem/1066 #1066 : 无间道之并查集 时间限制:20000ms 单点时限:1000ms 内存限制:256M ...

  4. ACM: Ubiquitous Religions-并查集-解题报告

    Ubiquitous Religions Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu Descript ...

  5. ACM学习历程—SNNUOJ 1110 传输网络((并查集 && 离线) || (线段树 && 时间戳))(2015陕西省大学生程序设计竞赛D题)

    Description Byteland国家的网络单向传输系统可以被看成是以首都 Bytetown为中心的有向树,一开始只有Bytetown建有基站,所有其他城市的信号都是从Bytetown传输过来的 ...

  6. HDU 6109 数据分割 【并查集+set】 (2017"百度之星"程序设计大赛 - 初赛(A))

    数据分割 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  7. HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...

  8. 2019西北工业大学程序设计创新实践基地春季选拔赛 I Chino with Rewrite (并查集+树链剖分+线段树)

    链接:https://ac.nowcoder.com/acm/contest/553/I 思路:离线整棵树,用并查集维护下联通的情况,因为值只有60个,用2的x(1<=x<=60)次方表示 ...

  9. TOJ3955: NKU ACM足球赛(并查集+map+细节题)

    时间限制(普通/Java):5000MS/15000MS     内存限制:65536KByte 描述 NKU ACM最近要举行足球赛,作为此次赛事的负责人,Lee要对报名人员进行分队.分队要遵循如下 ...

随机推荐

  1. 简单 Linux 文件系统?

    在 Linux 操作系统中,所有被操作系统管理的资源,例如网络接口卡.磁盘驱动器.打印机.输入输出设备.普通文件或是目录都被看作是一个文件.也就是说在 Linux 系统中有一个重要的概念**:一切都是 ...

  2. Linux Centos7使用ping命令ping不通网络的解决方案

    本解决方案不配置dns,都是ping的IP地址,所以如果想ping域名,则加上DNS项的配置后自行尝试吧 我使用的虚拟机系统信息: Linux:Centos7 Network:虚拟机设置的桥接模式(自 ...

  3. JVM的小总结(转)

    ref:http://www.cnblogs.com/ityouknow/p/6482464.html 注1:看了大神:纯洁的微笑的JVM系列篇,发现好多地方还是似懂非懂,理解的并不透彻,jvm的调优 ...

  4. spring集成mongodb简单使用和测试方式

    @EnableMongoRepositories @ComponentScan(basePackages = "cn.example") @Configuration public ...

  5. 面试问题之C++语言:多态

    什么是多态? 概念:同一操作作用于不同的对象,可以有不同的解释,产生不同的执行结果,这就是多态性.简单的说,就是用基类的引用指向子类的对象. 为什么要用多态呢? 原因:封装可以隐藏实现细节,使得代码模 ...

  6. 不同版本的 Spring Framework 有哪些主要功能?

    Version Feature Spring 2.5 发布于 2007 年.这是第一个支持注解的版本. Spring 3.0 发布于 2009 年.它完全利用了 Java5 中的改进,并为 JEE6 ...

  7. Protected 修饰符

    Protected 修饰的变量和方法,在子类中可见.所有的变量和方法,子类都继承( private 也是).父类的变量和方法在子类实例中预留内存空间. Private 成员不能被子类实例引用.构造方法 ...

  8. BUG战斗史 —— 日期格式与字符串之间的转换

    说在前面 最近在公司实习,接触了一个中小型的后台管理系统,不得不说,项目的目录结构比我平时做的"课程设计"要来得复杂,于是我先去看了Github上一些后台管理系统的模板项目 在gu ...

  9. swagger的作用和配置使用

    纯API项目中 引入swagger可以生成可视化的API接口页面     引入包 nuget包: Swashbuckle.AspNetCore(最新稳定版) 配置 1.配置Startup类Config ...

  10. 顺利通过EMC实验(14)