一、说明

Fate 的模型预测有 离线预测在线预测 两种方式,两者的效果是一样的,主要是使用方式、适用场景、高可用、性能等方面有很大差别;本文分享使用 Fate 基于 纵向逻辑回归 算法训练出来的模型进行离线预测实践。

二、查询模型信息

执行以下命令,进入 Fate 的容器中:

docker exec -it $(docker ps -aqf "name=standalone_fate") bash

首先我们需要获取模型对应的 model_idmodel_version 信息,可以通过 job_id 执行以下命令获取:

flow job config -j 202205070226373055640 -r guest -p 9999 --output-path /data/projects/fate/examples/my_test/

job_id 可以在 FATE Board 中查看。

执行成功后会返回对应的模型信息,以及在指定目录下生成一个文件夹 job_202205070226373055640_config

{
"data": {
"job_id": "202205070226373055640",
"model_info": {
"model_id": "arbiter-10000#guest-9999#host-10000#model",
"model_version": "202205070226373055640"
},
"train_runtime_conf": {}
},
"retcode": 0,
"retmsg": "download successfully, please check /data/projects/fate/examples/my_test/job_202205070226373055640_config directory",
"directory": "/data/projects/fate/examples/my_test/job_202205070226373055640_config"
}

job_202205070226373055640_config 里面包含4个文件:

  • dsl.json:任务的 dsl 配置。
  • model_info.json:模型信息。
  • runtime_conf.json:任务的运行配置。
  • train_runtime_conf.json:空。

三、模型部署

执行以下命令:

flow model deploy --model-id arbiter-10000#guest-9999#host-10000#model --model-version 202205070226373055640

分别通过 --model-id 与 --model-version 指定上面步骤查询到的 model_id 和 model_version

部署成功后返回:

{
"data": {
"arbiter": {
"10000": 0
},
"detail": {
"arbiter": {
"10000": {
"retcode": 0,
"retmsg": "deploy model of role arbiter 10000 success"
}
},
"guest": {
"9999": {
"retcode": 0,
"retmsg": "deploy model of role guest 9999 success"
}
},
"host": {
"10000": {
"retcode": 0,
"retmsg": "deploy model of role host 10000 success"
}
}
},
"guest": {
"9999": 0
},
"host": {
"10000": 0
},
"model_id": "arbiter-10000#guest-9999#host-10000#model",
"model_version": "202205070730131040240"
},
"retcode": 0,
"retmsg": "success"
}

部署成功后返回一个新的 model_version

四、准备预测配置

执行以下命令:

cp /data/projects/fate/examples/dsl/v2/hetero_logistic_regression/hetero_lr_normal_predict_conf.json /data/projects/fate/examples/my_test/

直接把 Fate 自带的纵向逻辑回归算法预测配置样例,复制到我们的 my_test 目录下。

预测的配置文件主要配置三部分:

  • 上面部分为配置发起者以及参与方角色
  • 中间部分需要填入正确的 模型信息
  • 下面的则为预测使用的数据表

唯一需要修改的就是中间的 模型信息 部分;需要注意的是这里输入的版本号是 模型部署 后返回的版本号,并且需要增加 job_type 为 predict 指定任务类型为预测任务。

五、执行预测任务

执行以下命令:

flow job submit -c hetero_lr_normal_predict_conf.json

与模型训练一样也是使用 submit 命令,通过 -c 指定配置文件。

执行成功后返回:

{
"data": {
"board_url": "http://127.0.0.1:8080/index.html#/dashboard?job_id=202205070731385067720&role=guest&party_id=9999",
"code": 0,
"dsl_path": "/data/projects/fate/fateflow/jobs/202205070731385067720/job_dsl.json",
"job_id": "202205070731385067720",
"logs_directory": "/data/projects/fate/fateflow/logs/202205070731385067720",
"message": "success",
"model_info": {
"model_id": "arbiter-10000#guest-9999#host-10000#model",
"model_version": "202205070730131040240"
},
"pipeline_dsl_path": "/data/projects/fate/fateflow/jobs/202205070731385067720/pipeline_dsl.json",
"runtime_conf_on_party_path": "/data/projects/fate/fateflow/jobs/202205070731385067720/guest/9999/job_runtime_on_party_conf.json",
"runtime_conf_path": "/data/projects/fate/fateflow/jobs/202205070731385067720/job_runtime_conf.json",
"train_runtime_conf_path": "/data/projects/fate/fateflow/jobs/202205070731385067720/train_runtime_conf.json"
},
"jobId": "202205070731385067720",
"retcode": 0,
"retmsg": "success"
}

六、查看预测结果

可以通过返回的 board_url 或者 job_idFATE Board 里查看结果,但是图形化界面里最多只能查看 100 条记录;

我们可以通过 output-data 命令,导出指定组件的所有数据输出:

flow tracking output-data -j 202205070731385067720 -r guest -p 9999 -cpn hetero_lr_0 -o /data/projects/fate/examples/my_test/predict
  • -j:指定预测任务的 job_id
  • -cpn:指定组件名。
  • -o:指定输出的目录。

执行成功后返回:

{
"retcode": 0,
"directory": "/data/projects/fate/examples/my_test/predict/job_202205070731385067720_hetero_lr_0_guest_9999_output_data",
"retmsg": "Download successfully, please check /data/projects/fate/examples/my_test/predict/job_202205070731385067720_hetero_lr_0_guest_9999_output_data directory"
}

在目录 /data/projects/fate/examples/my_test/predict/job_202205070731385067720_hetero_lr_0_guest_9999_output_data 中可以看到两个文件:

  • data.csv:为输出的所有数据。
  • data.meta:为数据的列头。

扫码关注有惊喜!

隐私计算FATE-离线预测的更多相关文章

  1. 隐私计算FATE-多分类神经网络算法测试

    一.说明 本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测. 二分类算法:是指待预测的 label 标签的取值只有两种:直白来 ...

  2. 隐私计算FATE-模型训练

    一.说明 本文分享基于 Fate 自带的测试样例,进行 纵向逻辑回归 算法的模型训练,并且通过 FATE Board 可视化查看结果. 本文的内容为基于 <隐私计算FATE-概念与单机部署指南& ...

  3. HMM的概率计算问题和预测问题的java实现

    HMM(hidden markov model)可以用于模式识别,李开复老师就是采用了HMM完成了语音识别. 一下的例子来自于<统计学习方法> 一个HMM由初始概率分布,状态转移概率分布, ...

  4. 用MATLAB生成模糊控制离线查询表

    实时采样得到的数据经过模糊化处理后输入机器,通过查询模糊规则表便可得到应有的输出模糊量,从而避免了近似推理过程.实际应用中,特别是在控制系统较为简单而采用单片机控制时,常常采用这种查表法. 模糊控制表 ...

  5. Others-阿里专家强琦:流式计算的系统设计和实现

    阿里专家强琦:流式计算的系统设计和实现 更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 阿里云数据事业部强琦为大家带来题为“流式计算的系统设计与实现”的演讲,本 ...

  6. 大数据入门第十六天——流式计算之storm详解(一)入门与集群安装

    一.概述 今天起就正式进入了流式计算.这里先解释一下流式计算的概念 离线计算 离线计算:批量获取数据.批量传输数据.周期性批量计算数据.数据展示 代表技术:Sqoop批量导入数据.HDFS批量存储数据 ...

  7. 关于k8s这项大动作,预示着边缘计算迎来“开源”发展的新周期……

    在文章<最近在边缘计算领域,发生了一件足以载入物联网史册的大事…>我曾经提到Kubernetes(简称K8s)将从超大规模云计算环境,被带入到物联网边缘计算场景中. 事情有了新进展,从本周 ...

  8. 【Streaming】30分钟概览Spark Streaming 实时计算

    本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark S ...

  9. Titanic幸存预测分析(Kaggle)

    分享一篇kaggle入门级案例,泰坦尼克号幸存遇难分析. 参考文章: 技术世界,原文链接 http://www.jasongj.com/ml/classification/ 案例分析内容: 通过训练集 ...

随机推荐

  1. Java学习day2

    今天学习了Java的数据类型.运算符.选择循环结构以及数组. Java所有的关键字全部小写 Java的数据类型与c语言相似,但是c语言定义数组时可以不主动对其初始化,而Java则必须先初始化,有动态和 ...

  2. Promise了解

    Promise是一个构造函数,excutor是他的执行函数,同时也是构造函数的参数. new Promise(excutor) excutor有两个参数(resolve,reject) Promise ...

  3. Dubbo 学习笔记

    分布式基础理论 1. 什么是分布式系统? 分布式系统是若干独立计算机的集合,这些计算机对于用户来说就像单个系统 2. 应用架构演变 单一应用架构 当网站流量很小时,只需一个应用,将所有功能都部署在一起 ...

  4. PHP入门-Window 下利用Nginx+PHP 搭建环境

    前言 最近公司有个PHP项目需要开发维护,之前一直都是跟着巨硬混的,现在要接触PHP项目.学习一门新语言之前,先搭建好环境吧,鉴于公司项目是基于php 7.1.33 版本的,所以以下我使用的都是基于这 ...

  5. 技术分享 | Selenium 测试用例编写

    编写Selenium测试用例就是模拟用户在浏览器上的一系列操作,通过脚本来完成自动化测试. 编写测试用例的优势: 开源,免费. 支持多种浏览器 IE,Firefox,Chrome,Safari. 支持 ...

  6. MySQL基础入门(1)

    MySQL基础入门(1) 为什么学习MySQL 关系数据库管理系统(Relational Database Management System, RDBMS)是一种极为重要的工具,其应用十分广泛,从商 ...

  7. Django安装+创建一个Django项目

    安装 选用pycharm    在终端输入命令:pip install django 安装完成后创建项目 1.在你想创建项目的目录下输入下面的代码 2.django-admin startprojec ...

  8. [题解] 春荔(cut) | 贪心

    题目大意 有一个长度为 \(n\) 的非负整数序列 \(a_i\),每次可以选择一段区间减去 \(1\),要求选择的区间长度 \(\in[l,r]\),问最少多少次把每个位置减成 \(0\). 不保证 ...

  9. input 相关

    1.label 标签 for 属性同 input 标签 id 属性联系之一

  10. Mybatis-Plus入门实践

    简介 Mybatis-Plus 简称 MP ,是 Mybatis 的增强工具,提供了一批开箱即用的功能.特性.接口.注解,简化了应用程序访问数据库的相关操作,完善了Mybatis作为ORM仅能做到半自 ...