今天要给大家分享的统计方法是马尔可夫多态模型,思路来源是下面这篇文章:

Ward DD, Wallace LMK, Rockwood K

Cumulative health deficits, APOE genotype, and risk for later-life mild cognitive impairment and dementia

Journal of Neurology, Neurosurgery & Psychiatry 2021;92:136-142.

我们知道轻度认知损害随着时间的发展有可能会发展成痴呆,也可能会恢复,有可能不变,那这篇文章要解决的问题就是找到引起人群不同认知状态变化的风险因子,因子其实有很多啦,作者本文只关注一个,叫做年龄相关的健康赤字(age-related health deficits)。作者想探讨年龄相关的健康赤字是如何对认知状态的转换起作用的。

作者用了马尔可夫多态模型Markov multi-state models回答了自己的研究问题,相应地,如果你的感兴趣的结局变量是分类变量,比如状态,并且各种状态之间可以相互转换,你想看看到底哪些因素影响了某种转化的风险,那么今天介绍的马尔可夫多态模型就值得你好好研究下了。

多态马尔可夫模型

要理解多态马尔可夫模型multistate Markov models,首先要知道马尔可夫过程(Markov process)

马尔可夫过程(Markov process)是一类随机过程,因为是俄国数学家A.A.马尔可夫于1907年提出来的,所以有了这么个名字。该过程就是说:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 (过去 )。这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性质,具有这种性质的随机过程叫做马尔可夫过程,最简单的马尔可夫过程就是一阶过程,每一个状态的转移只依赖于其之前的那一个状态。

假设这个模型的每个状态都只依赖于之前的状态,这个假设被称为马尔科夫假设,这个假设可以大大地简化具有马尔可夫过程的随机性问题。

现在给出马尔可夫模型的说明

The Markov models stand out as much simpler than other models from a probability point of view, and this simplifies the likelihood evaluation

可以理解为马尔可夫模型是对状态改变情况的合理的简化假设。那么我们接着看多态模型:

多态模型的基本说明如下图:

就是说多态模型是来探讨转换状态的,一个个体在观测的特定时期一定是处于确定数量状态中的一种,对于这类情况我们就可以用多态模型来研究。如果这些状态的转换如果满足马尔可夫性质,此时就叫做马尔可夫多态模型。

就是你手上恰好有纵向随访数据,结局变量是分类变量(连续变量也可以转化成有临床意义的分类变量),你好奇随着时间的变化,个体的在各个类别的转化情况是怎么样的,以及影响转化概率的因素有哪些,那么就可以考虑使用多态模型。

A multi-state model describes how an individual moves between a series of states in continuous time

经典的多态模型就是研究疾病状态转换时使用的多态马尔可夫多态模型,模型图示如下:就是一个病人疾病可以加深可以恢复,并且随时都可能死亡的多态模型,在这种模型中,下次状态的改变只和当前状态有关

in which individuals can advance or recover between adjacent disease states, or die from any state.:

Fitting multi-state models to panel data generally relies on the Markov assumption, that future evolution only depends on the current state.

常见的操作就是使用多态Markov模型(Multi-states Markov model,MSM)利用纵向数据估计特定人群在不同时间内健康状态的转换概率,并对其健康状态的转换风险进行多因素探讨,这儿也给大家贴两篇多态马尔可夫模型的中文文献,感兴趣的同学可以自行去下载查看:

展元元, 韩耀风, 方亚. 基于多状态Markov模型的我国老年人无失能期望寿命及其影响因素. 中华流行病学杂志, 2021, 42(6): 1024-1029

石舒原, 赵厚宇, 刘志科, 杨晴晴, 沈鹏, 詹思延, 林鸿波, 孙凤. 多状态马尔科夫模型估计2型糖尿病患者慢性并发症累积数量的转移概率及影响因素研究. 中华流行病学杂志, 2021, 42(7): 1274-1279

反正我觉得这个模型对做科研的临床医生应该挺有用的吧,值得去学习的。

论文报告方法

依然是回到我们文章开头提到的文章中,文章中是有画一个状态转化的示意图的,如下:

在文章中作者定义了3种状态NCI, MCI and dementia,并且认为转换过程可以向前也可以向后,并且随时可以死亡,但是转换只能在相邻两种状态之间转换而不能跳跃(当然做统计的时候这些条件都是可以自己根据客观情况设定的)。论文报告了各个状态的转换次数和相应转换方式的转换概率,如图:

就是所作者报告了各个状态转换的次数和转换概率,这个很好理解。

结合研究问题,文章最重要的结果信息就是年龄相关的健康赤字frailty index score对状态转换的影响究竟如何,作者给出了不同亚组健康赤字对不同转换的HR的森林图:

可以看到,frailty index score对每条作者关心的转换方式的HR都是有展示的,并且好多亚组的结果都呈现在了上图中,比如通过上图我们就可以知道,无论是否携带APOE,frailty index score的增长总是会使得从NCI转换成MCI,和MCI转换成痴呆的风险变高。

根据上面的结果作者就明白了年龄相关的健康赤字究竟是如何影响痴呆状态发生发展的。

上面基本上就是论文的主要分析,细枝末节大家自己去看原文哈,我们接着看操作。

实例操练

我现在手上有如下数据集:

其中PTNUM是病人编号,age是每次随访的年龄,year是随访时时间,state是随访时的状态总共有4种,我现在想做马尔可夫多态模型看一下究竟是哪些因素影响了各个状态转换,在做多态模型的时候需要将同一个病人的数据放一起,并且个体内随访时间应该升序排列(就像上图一样的):

observations from the same subject must be adjacent in the dataset, and observations must be ordered by time within subjects.

数据这么处理后我们就可以很方便地统计出状态转化次数矩阵,代码如下:

statetable.msm(state, PTNUM, data=cav)

转换次数输出结果如下:

上面的结果就显示了随着随访的进行,有多少人从一个状态转化到了另外一个状态,就是论文中报告的每个转化的转化次数,我们还可以使用pmatrix.msm函数得到转化概率矩阵,如下图:

有了状态转换次数和状态转换概率,论文中的table2就出来了。

再继续探讨状态转换的影响因素,在探究状态转化影响因素之前,我们需要设定一个转化的限制矩阵,比如论文中的状态转化情况就可以用如下矩阵表示:

就是说我可以从状态1NCI转换到状态2MCI,也可以从MCI转回NCI,每一种状态也都可以转成状态4死亡,但是也不能跨状态转换,而且死亡之后也不可能转换成状态1,2,3。那么相应的不可转换的情况在矩阵中都要固定为0。

状态转换的情况我们根据实际设定好之后我们就可以运行多态模型了,代码如下:

msm_model <- msm(state ~ years, subject = PTNUM, data = mydata,
covariates = ~ dage + ihd,
qmatrix = twoway4.q,
death = 4,
method = "BFGS", control = list(fnscale = 4000, maxit = 10000))

代码运行的过程就是就是去寻找最符合我们数据maximise the likelihood的同时又满足我们设定的转换参数的过程。

运行上面的代码即可得到相应影响因素的HR和置信区间,比如两个协变量dage和ihd对各个状态转化情况的HR如下:

后面的工作就是根据各个亚组的HR和置信区间将森林图做出来,然后对标论文就算完成啦。今天的分享就到这儿。

小结

今天给大家写了马尔可夫多态模型的原理的做法,希望能给到大家一些思路上的启发,感谢大家耐心看完,自己的文章都写的很细,重要代码都在原文中,希望大家都可以自己做一做,请转发本文到朋友圈后私信回复“数据链接”获取所有数据和本人收集的学习资料。如果对您有用请先记得收藏,再点赞分享。

也欢迎大家的意见和建议,大家想了解什么统计方法都可以在文章下留言,说不定我看见了就会给你写教程哦,有疑问欢迎私信,有合作意向请直接滴滴我。

R数据分析:纵向分类结局的分析-马尔可夫多态模型的理解与实操的更多相关文章

  1. 马尔科夫随机场模型(MRF-Markov Random Field)

    原文: http://blog.sina.com.cn/s/blog_92c398b00102vs3q.html 马尔科夫过程​ 隐马尔科夫过程​​ 与马尔科夫相比,隐马尔可夫模型则是双重随机过程,不 ...

  2. 深入理解隐马尔可夫(HMM)模型

    1.安装依赖包hmmlearn 直接pip install hmmlearn可能会报错(安装这个模块需要使用C环境编译) 可以尝试用 conda install -c omnia hmmlearn安装 ...

  3. Python实现HMM(隐马尔可夫模型)

    1. 前言 隐马尔科夫HMM模型是一类重要的机器学习方法,其主要用于序列数据的分析,广泛应用于语音识别.文本翻译.序列预测.中文分词等多个领域.虽然近年来,由于RNN等深度学习方法的发展,HMM模型逐 ...

  4. 隐马尔科夫模型HMM

    崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首先,本 ...

  5. 马尔科夫随机场(MRF)及其在图像降噪中的matlab实现

    (Markov Random Field)马尔科夫随机场,本质上是一种概率无向图模型 下面从概率图模型说起,主要参考PR&ML 第八章 Graphical Model (图模型) 定义:A g ...

  6. MCMC(二)马尔科夫链

    MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)M-H采样和Gibbs采样(待填坑) 在MCMC(一)蒙特卡罗方法中,我们讲到了如何用蒙特卡罗方法来随机模拟求解一些复杂的连续积分或 ...

  7. 机器学习(九)隐马尔可夫模型HMM

    1.隐马尔可夫HMM模型 一个隐马尔可夫模型可以表示为\[\lambda=\{A,B,\pi\}\]具体就不说了,比较基本. 2.HMM模型的三个基本问题 1.概率计算问题:给定\(\lambda\) ...

  8. HMM(隐马尔科夫)用于中文分词

    隐马尔可夫模型(Hidden Markov Model,HMM)是用来描述一个含有隐含未知参数的马尔可夫过程. 本文阅读了2篇blog,理解其中的意思,附上自己的代码,共同学习. 一.理解隐马尔科夫 ...

  9. 基于隐马尔科夫模型(HMM)的地图匹配(Map-Matching)算法

    文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matchi ...

随机推荐

  1. Solution -「AGC 016F」Games on DAG

    \(\mathcal{Description}\)   Link.   给定一个含 \(n\) 个点 \(m\) 条边的 DAG,有两枚初始在 1 号点和 2 号点的棋子.两人博弈,轮流移动其中一枚棋 ...

  2. Mybatis获取自增主键的两种方式

    <insert id="saveOne" parameterType="com.buwei.entity.User" > INSERT into u ...

  3. 正确理解jmeter线程组之Ramp-Up

    Ramp-Up表示多少时间内启动线程,比如线程数100,Ramp-Up设置为10,表示10秒内启动100线程,不一定是每秒启动10个线程: 下面我们来做几个测试 线程组设置:100线程,Ramp-Up ...

  4. Renix软件如何发送CRC错误的报文——网络测试仪实操

    我们在日常使用Renix软件时,有时候需要发送CRC错误的报文,那么如何操作呢?接下来为你详细介绍一下操作步骤. 1.打开Renix软件,连接机框并预约测试端口: 2.添加流模板 3.给P1设置CRC ...

  5. FPGA+x86构建高性能国产网络测试仪竞技之道

    众所周知,以太网已经深入我们的生活无处不在,企业.校园.大数据中心和家庭等都离不开网络,否则我们的生活将受到严重的影响. 以太网的接口速率也是迅速发展:10M.100M.GE.10GE.40GE.10 ...

  6. 浅谈MySQL日志文件|手撕MySQL|对线面试官

    关注微信公众号[程序员白泽],进入白泽的知识分享星球 前言 上周五面试了字节的第三面,深感数据库知识的重要,我也意识到在平时的学习中,自己对于数据库的学习较为薄弱.甚至在有过一定实习经验之后,依旧因为 ...

  7. 【C# 线程】转载 句柄的基本概念 .NET对象与Windows句柄

    转载自:https://www.cnblogs.com/silverb/p/5300255.html 句柄的基本概念 1.句柄就是进程句柄表中的索引.2.句柄是对进程范围内一个内核对象地址的引用,一个 ...

  8. weblogic threadpool has stuck threads引发内存溢出

    转至:https://blog.csdn.net/wyx713510713/article/details/12705221?utm_source=copy 最近项目老是出问题,weblogic的no ...

  9. Lua中如何实现类似gdb的断点调试--04优化钩子事件处理

    在第一篇的01最小实现中,我们实现了一个断点调试的最小实现,在设置钩子函数时只加了line事件,显然这会对性能有很大的影响.而后来两篇02通用变量打印和03通用变量修改及调用栈回溯则是提供了一些辅助的 ...

  10. 初识——HTTP3

    目录 初识--HTTP3 HTTP HTTP1.0和HTTP1.1的主要区别 HTTP2 HTTP3 相关链接 初识--HTTP3 想了解HTTP3??那我们就得先知道为啥会出现HTTP3,因此我们需 ...