uoj310【UNR #2】黎明前的巧克力(FWT)
uoj310【UNR #2】黎明前的巧克力(FWT)
题解时间
对非零项极少的FWT的优化。
首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j $ 的方案数,
有 $ f[i][j]= f[i-1][j] + 2 * f[i-1][j \oplus a[i]] $ 。
可以考虑FWT,但很明显时间复杂度没有优化。
但另一方面,每层的卷积卷的都是 $ 1,0,0,...,2,0,0,... $ 的形式,
这样一来卷之后每项都是 $ -1 $ 或 $ 3 $ 。
因此大胆一点直接把所有的式子加到一起卷积,
卷完有什么用呢?
这样卷出来的结果是每层卷积相加,而正常FWT求解是每层卷积相乘。
每一位都是共计 $ n $ 个 $ -1 $ 和 $ 3 $ 加一起,所以可以求出每一位上两种数的个数。
由于知道了每一位上两种数的个数,直接每一位快速幂就能求出原来的相乘结果。
#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
template<typename TP,typename... Args>inline void read(TP& t,Args&... args){read(t),read(args...);}
namespace RKK
{
const int N=2000011;
const int defaultlen=1048576;
const int mo=998244353,inv2=499122177,inv4=748683265;
void doadd(int &a,int b){if((a+=b)>=mo) a-=mo;}int add(int a,int b){return (a+=b)>=mo?a-mo:a;}
void domul(int &a,int b){a=1ll*a*b%mo;}int mul(int a,int b){return 1ll*a*b%mo;}
int fpow(int a,int p){int ret=1;while(p){if(p&1) domul(ret,a);domul(a,a),p>>=1;}return ret;}
int n,a[N];
void fwtxor(int *a,int len,int tp)
{
for(int i=1,w1,w2;i<len;i<<=1)
for(int j=0;j<len;j+=i<<1)
for(int k=0;k<i;k++)
{
w1=a[j+k],w2=a[j+k+i];
a[j+k]=add(w1,w2),a[j+k+i]=add(w1,mo-w2);
if(tp==-1) domul(a[j+k],inv2),domul(a[j+k+i],inv2);
}
}
int main()
{
read(n);for(int i=1,w;i<=n;i++) read(w),a[0]+=1,a[w]+=2;
fwtxor(a,defaultlen,1);
for(int i=0,cnt1,cnt3;i<defaultlen;i++)
{
cnt3=mul(add(n,a[i]),inv4),cnt1=n-cnt3;
a[i]=(cnt1&1)?mo-fpow(3,cnt3):fpow(3,cnt3);
}
fwtxor(a,defaultlen,-1);
printf("%d\n",add(a[0],mo-1));
return 0;
}
}
int main(){return RKK::main();}
uoj310【UNR #2】黎明前的巧克力(FWT)的更多相关文章
- 【uoj#310】[UNR #2]黎明前的巧克力 FWT
题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...
- [UOJ310][UNR #2]黎明前的巧克力
uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...
- UOJ #310 黎明前的巧克力 FWT dp
LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...
- UOJ310. 【UNR #2】黎明前的巧克力 [FWT]
UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...
- UOJ#310 【UNR #2】黎明前的巧克力 FWT 多项式
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ310.html 题目传送门 - UOJ#310 题意 给定 $n$ 个数 ,请你选出两个不相交的集合(两个 ...
- UOJ#310. 【UNR #2】黎明前的巧克力(FWT)
题意 题目链接 Sol 挂一个讲的看起来比较好的链接 然鹅我最后一步还是没看懂qwq.. 坐等SovietPower大佬发博客 #include<bits/stdc++.h> using ...
- [UOJ UNR#2 黎明前的巧克力]
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...
- UOJ #310 黎明前的巧克力 (FWT)
题目传送门 题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,$n,a_{i}\leq 10^{6}$ 这是 ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
随机推荐
- [LeetCode]28.实现strStr()(Java)
原题地址: implement-strstr 题目描述: 实现 strStr() 函数. 给你两个字符串 haystack 和 needle ,请你在 haystack 字符串中找出 needle 字 ...
- 【lwip】lwip源码基础
目录 前言 概念&作用 网络接口 概念引入 总结 lwip netif 结构体 链接 字段分析 网卡链表 网络 IP 接收数据函数 发送数据函数 ARP 模块调用的发送函数 出口回调函数 用户 ...
- k8s虚拟机未关闭,电脑重启后,虚拟机无法启动
莫名其妙电脑重启了,虚拟机连不上,心里真的是一万匹草泥马,显示如下: Generating "/run/initramfs/rdsosreport.txt" Entering em ...
- 移动BI应该怎么规划?每一个数据产品经理必看
在移动化.大数据浪潮的今天,基于数据做决策应该是每一家公司的标配:每家公司都有专门负责数据的人,也都应该有一个BI部门. 而移动BI,基于手机端随时随地进行数据查询和分析--更是BI中不可或缺的一部分 ...
- mybatis和spring的xml基本配置
mybatis 导入依赖环境 <dependency> <groupId>org.mybatis</groupId> <artifactId>mybat ...
- Windows端口开启关闭
转至:https://www.cnblogs.com/shenyiyangle/p/10503754.html netstat-a #显示所有活动的TCP连接以及计算机监听的TCP和UDP端口. ne ...
- Python 爬取 "王者荣耀.英雄壁纸" 过程中的矛和盾
1. 前言 学习爬虫,最好的方式就是自己编写爬虫程序. 爬取目标网站上的数据,理论上讲是简单的,无非就是分析页面中的资源链接.然后下载.最后保存. 但是在实施过程却会遇到一些阻碍. 很多网站为了阻止爬 ...
- pyqt(二)
二.文本和图片 1. 文本控件 文本控件是QLabel from PyQt5.QtWidgets import QWidget,QApplication,QLabel from PyQt5.QtCor ...
- Python面向对象之数据封装的应用及配置文件
面向对象封装的应用 1.配置文件 1.1 ini配置文件 ini 文件是Initialzation File的缩写,平时用于存储软件的配置文件.例如:MySQL数据库的配置文件(my.ini) [my ...
- 03-Eureka注册中心
1.介绍 2.快速开始 2.1 pom文件依赖 <?xml version="1.0" encoding="UTF-8"?> <project ...