2021.04.03【NOIP提高B组】模拟 总结
T1
题目大意:求最小的 \(n\in[0,lim]\) 使得区间 \([L,R]\) 在线段树建树 \(build(0,n)\) 的区间内
考场时想到了正解,结果推式子退错了。。。
其实就是从下往上搜索,可以转到父节点为 \([l,2(l-1)-r],[l,2(l-1)-r+1],[r,2r-l],[r,2r-l+1]\)
如果 \(l=0\) 那么 \(r\) 就是当前答案
但是这样会时超,原因:如果无法将 \(l\) 缩小,那么 \(r\) 会一直扩大到 \(lim\) 才返回,会浪费许多时间
其实如果 \(2l<r\) 就是不行的
#include<bits/stdc++.h>
using namespace std;
const int inf=2100000000;
int ql,qr,n,T,ans;
void fnd(int l,int r) {
if(l<0||r>n||r<0||r>ans)return;
if(!l) { ans=r; return; }
if(2*l<r)return;
fnd(2*l-r-2,r);
fnd(2*l-r-1,r);
fnd(l,r*2-l);
fnd(l,r*2+1-l);
}
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d%d%d",&ql,&qr,&n);
ans=inf;
if(ql^qr)fnd(ql,qr);
else if(qr<=n)ans=qr;
printf("%d\n",ans<inf?ans:-1);
}
}
希望以后式子不要退错
T2
题目大意: \(n\le 18\) 个桶,一次只能挑两个桶。每次有话费,问最小话费
状压 dp 板子。
T3
题目大意:给你一个括号串,定义若 \(A,B\) 是合法串,则 \(AB\) 和 \((A)\) 都是合法串。
设经过 \(i\) 的合法串个数 \(ans_i\) ,求 \(\sum_{i=1}^n i\times ans_i\mod 100000007\)
将一对括号合成一块,记 \(f_i,g_i\) 为第 \(i\) 个括号在左边、右边同级括号的个数
则第 \(i\) 块的答案为 \(f_i*g_i\)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1000005,P=1000000007;
int T,n,top,st[N],fl[N],nxt[N],lst[N],f[N],g[N]; char x[N]; LL ans[N],res;
inline void add(int l,int r,LL v) { ans[l]+=v,ans[r+1]-=v; }
int main() {
scanf("%d",&T);
while(T--) {
scanf("%s",x+1);
n=strlen(x+1);
top=res=0,fl[0]=1;
memset(f,0,sizeof(f));
memset(g,0,sizeof(g));
memset(nxt,0,sizeof(nxt));
memset(lst,0,sizeof(lst));
memset(ans,0,sizeof(ans));
for(int i=1;i<=n;i++)
if(x[i]=='(')st[++top]=i,fl[top]=0;
else {
if(fl[top])++top,st[top]=i,fl[top]=1;
else lst[i]=st[top],nxt[st[top]]=i,--top;
}
for(int i=1;i<=n;i++)f[i]=lst[i]?f[lst[i]-1]+1:0;
for(int i=n;i>=1;i--)g[i]=nxt[i]?g[nxt[i]+1]+1:0;
for(int i=1;i<=n;i++)if(lst[i])add(lst[i],i,1LL*f[i]*g[lst[i]]);
for(int i=1;i<=n;i++)ans[i]+=ans[i-1],res+=1LL*i*ans[i]%P;
printf("%lld\n",res);
}
}
T4
题目大意: \(A\) 数组降序,\(B_i=\sum_{j=i}^n A_i\) ,现在要从 \((n,1)\) 走到 \((1,1)\),每次可以从 \((x,y)\) 走到 \((x+1,y-1)\) 或 \((x,\lfloor\dfrac{y+1}{2}\rfloor)\)
若选择后者,花费为 \(B_x\)。问最小代价
因为数组有序,所以在哈夫曼树中深度单调不减。考虑 \(dp\) 构建哈夫曼树
设 \(f_{i,j}\) 为放入下标所有下标比 \(i\) 小的点,剩下 \(j\) 个叶子点
- 所有叶子节点扩展出两个后继,剩下所有节点深度加一,代价 \(\sum_{k=i+1}^nA_k\) 状态是 \(f_{2i,j}\)
- 把第 \(i\) 个数放到一个叶子上,无代价,状态是 \(f_{i+1,j-1}\)
最后答案是 \(f_{n+1,k}\)
把以上过程倒过来,就是模拟走路,所以直接用贪心构建哈夫曼树。 \(O(n\log n)\)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=100005;
int T,n,h[N],tot;
LL ans;
inline void ins(int vl) {
register int x=++tot,fa=x>>1;
while(fa) {
if(vl<h[fa]) h[x]=h[fa],x=fa,fa>>=1;
else break;
} h[x]=vl;
}
inline void pop() {
register int x=1,sn=2,vl=h[tot--];
while(sn<=tot) {
if(sn<tot&h[sn|1]<h[sn]) sn|=1;
if(h[sn]<vl) h[x]=h[sn],x=sn,sn<<=1;
else break;
} h[x]=vl;
}
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d",&n),tot=0;
for(int i=1,x;i<=n;i++)
scanf("%d",&x),ins(x);
ans=0;
for(int i=1,f,g;i<n;i++) {
f=h[1],pop(),g=h[1],pop();
ans+=1LL*f+1LL*g,ins(f+g);
}
printf("%lld\n",ans);
}
}
2021.04.03【NOIP提高B组】模拟 总结的更多相关文章
- 5820. 【NOIP提高A组模拟2018.8.16】 非法输入(模拟,字符串)
5820. [NOIP提高A组模拟2018.8.16] 非法输入 (File IO): input:aplusb.in output:aplusb.out Time Limits: 1000 ms ...
- JZOJ 5818. 【NOIP提高A组模拟2018.8.15】 做运动
5818. [NOIP提高A组模拟2018.8.15] 做运动 (File IO): input:running.in output:running.out Time Limits: 2000 ms ...
- JZOJ 5812. 【NOIP提高A组模拟2018.8.14】 区间
5812. [NOIP提高A组模拟2018.8.14] 区间 (File IO): input:range.in output:range.out Time Limits: 1000 ms Memo ...
- 2021.05.04【NOIP提高B组】模拟 总结
T1 题目大意, \(S_{i,j}=\sum_{k=i}^j a_k\) ,求 \(ans=\min\{ S_{i,j}\mod P|S_{i,j}\mod P\ge K \}\) 其中 \(i\l ...
- [JZOJ5817] 【NOIP提高A组模拟2018.8.15】 抄代码
Description J 君是机房的红太阳,每次模拟她总是 AK 虐场.然而在 NOIP2117 中,居然出现了另一位 AK 的选手 C 君! 这引起了组委会的怀疑,组委会认为 C 君有抄袭 J 君 ...
- [JZOJ5818] 【NOIP提高A组模拟2018.8.15】 做运动
Description 一天,Y 君在测量体重的时候惊讶的发现,由于常年坐在电脑前认真学习,她的体重有了突 飞猛进的增长. 幸好 Y 君现在退役了,她有大量的时间来做运动,她决定每天从教学楼跑到食堂来 ...
- 【NOIP提高A组模拟2018.8.14】 区间
区间加:差分数组修改 O(n)扫描,负数位置单调不减 #include<iostream> #include<cstring> #include<cstdio> # ...
- [jzoj 5782]【NOIP提高A组模拟2018.8.8】 城市猎人 (并查集按秩合并+复杂度分析)
传送门 Description 有n个城市,标号为1到n,修建道路花费m天,第i天时,若gcd(a,b)=m-i+1,则标号为a的城市和标号为b的城市会建好一条直接相连的道路,有多次询问,每次询问某两 ...
- [jzoj 5781]【NOIP提高A组模拟2018.8.8】秘密通道 (最短路)
传送门 Description 有一副nm的地图,有nm块地,每块是下列四种中的一种: 墙:用#表示,墙有4个面,分别是前面,后面,左面,右面. 起点:用C表示,为主角的起点,是一片空地. 终点:用F ...
- [jzoj 5778]【NOIP提高A组模拟2018.8.8】没有硝烟的战争 (博弈论+dp)
传送门 Description 被污染的灰灰草原上有羊和狼.有N只动物围成一圈,每只动物是羊或狼. 该游戏从其中的一只动物开始,报出[1,K]区间的整数,若上一只动物报出的数是x,下一只动物可以报[x ...
随机推荐
- 《头号玩家》AI电影调研报告(五)
4.VR自由行走跑步机 电影中,它可以让玩家朝任意方向无限奔跑并保持在平台最中央,还可以模拟上台阶和走斜坡的情况.而下面这件VR跑步装备,可以让你在游戏世界穿行自如. 奥地利创意公司Cyberith公 ...
- QT类使用记录
QT类使用记录 1.QSharedMemory 提供了对一段共享内存的访问.既提供了被多进程和多线程共享的一段内存的访问.也为单线程或单进程锁定内存以实现互斥访问提供了方法. QSharedMemor ...
- Dockerfile 命令详解及最佳实践
Dockerfile 命令详解 FROM 指定基础镜像(必选) 所谓定制镜像,那一定是以一个镜像为基础,在其上进行定制.就像我们之前运行了一个 nginx 镜像的容器,再进行修改一样,基础镜像是必须指 ...
- docker进阶_docker-compose
Docker-compose 为什么使用docker-compose 官方介绍 Compose 是一个用于定义和运行多容器 Docker 应用程序的工具.使用 Compose,您可以使用 YAML ...
- Java第十五周作业
Cola公司的雇员分为以下若干类:(知识点:多态) [必做题]• 4.1 ColaEmployee :这是所有员工总的父类,属性:员工的姓名,员工的生日月份.方法:getSalary(int mont ...
- 初踩坑JS加载与audio接口:点击头像开始/暂停背景音乐
背景 封楼期间难得空闲,也静不下心学习,空闲之余萌生了重做引导单页的想法.因为之前都是扒站(某大公司游戏官网)+小改,一来虽然很炫酷,但本人水平有限,仍有很大一部分JS无从下手,甚至是看不懂|-_-| ...
- Odoo 服务器搭建备忘
前提 OS:Ubuntu 20.04LTS Odoo:14旗舰版 数据库:Postgres13.0 *数据库和Odoo安装在一台服务器 系统设置 为了Log日志时间好看,进行系统时区设置 # 查看可用 ...
- .NET性能优化-你应该为集合类型设置初始大小
前言 计划开一个新的系列,来讲一讲在工作中经常用到的性能优化手段.思路和如何发现性能瓶颈,后续有时间的话应该会整理一系列的博文出来. 今天要谈的一个性能优化的Tips是一个老生常谈的点,但是也是很多人 ...
- Java多线程——实现
"java多线程的实现--几乎都要和java.lang.Thread打交道" 方式一:继承于Thread类 1.创建一个继承于Thread类的子类 2.重写Thread类的run( ...
- Swift字符串操作-持续更新-2022
Swift字符串追加 var str = "OC" str.append(" Swfit") print(str) // 输出结果: OC Swift 输出结果 ...