本文以线性回归为例,介绍使用sklearn进行机器学习的一般过程。

  • 首先生成模拟数据
import numpy as np
def get_data(theta_true,N):
X=np.random.normal(size=(N,len(theta_true)))
Y=X@theta_true+np.random.normal(size=(N))
return (X,Y)
theta_true=np.array([2,3,4])
X,Y=get_data(theta_true,100)
  • 实例化一个估计器,进行一些可选参数配置。sklearn里的回归和线性回归是位于

    sklearn.linear_model包中的``LinearRegression`类,在实例化对象时有两个参数:

    • fit_intercept:bool,默认为True,是否计算此模型的截距,False 表示不计算截距
    • normalize:bool,默认为False如果为True,则在回归之前将对回归变量X进行归一化
    • copy_X : 布尔型参数,若为True,则X将被复制;否则将被覆盖。 可选参数。默认值为True。
    • n_jobs : 整型参数,表示用于计算的作业数量;若为-1,则用所有的CPU。可选参数。默认值为1
from sklearn.linear_model import LinearRegression
lm_model = LinearRegression()
  • 调用估计器的fit方法,传入数据和标签,进行学习
lm_model.fit(X,Y)
  • 查看估计出来的参数
lm_model.intercept_#查看截距
lm_model.coef_#查看系数
  • 进行预测
lm_model.predict(X_test)
  • 模型评估
lm.model.score(X_test,Y_test)#用R方进行评估

5. `sklearn`下的线性回归的更多相关文章

  1. sklearn 下的流行学习(Manifold Learning)—— sklearn.manifold

    1. t-SNE from sklearn.manifold import TSNE X_proj = TSNE(random_state=123).fit_transform(X) 2. t_sne ...

  2. sklearn 下距离的度量 —— sklearn.metrics

    1. pairwise from sklearm.metrics.pairwise import pairwise_distance 计算一个样本集内部样本之间的距离: D = np.array([n ...

  3. Python数模笔记-Sklearn(4)线性回归

    1.什么是线性回归? 回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系.回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利 ...

  4. sklearn机器学习实战-简单线性回归

    记录下学习使用sklearn,将使用sklearn实现机器学习大部分内容 基于scikit-learn机器学习(第2版)这本书,和scikit-learn中文社区 简单线性回归 首先,最简单的线性回归 ...

  5. 【机器学习】线性回归sklearn实现

    线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用sklearn框架实现线性回归.使用框架更方便,可以少写很多代码. 写了三个例子,分别是单变量的.双变量的和多变量的.单 ...

  6. 怎样用Python的Scikit-Learn库实现线性回归?

    来源商业新知号网,原标题:用Python的Scikit-Learn库实现线性回归 回归和分类是两种 监督 机器 学习算法, 前者预测连续值输出,而后者预测离散输出. 例如,用美元预测房屋的价格是回归问 ...

  7. 【学习笔记】sklearn数据集与估计器

    数据集划分 机器学习一般的数据集会划分为两个部分: 训练数据:用于训练,构建模型 测试数据:在模型检验时使用,用于评估模型是否有效 训练数据和测试数据常用的比例一般为:70%: 30%, 80%: 2 ...

  8. sklearn & ml tutorial

    第一章 引言 pd.scatter_matrix(pd.DataFrame(X_train),c=y_train_name,figsize=(15,15),marker='o',hist_kwds={ ...

  9. python实现线性回归之简单回归

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 首先定义一个基本的回归类,作为各种回归方法的基类: class Regression(o ...

随机推荐

  1. Spring-Bean标签属性scope范围

    scope:指对象的作用范围,取值如下 1.singleton:默认值,单例的 2.prototype:多例的 3.request:WEB项目,Spring创建一个Bean的对象,把对象存入到requ ...

  2. 用asmlib方式创建oracle集群ASM磁盘(oracleasm)

    创建asm磁盘的几种方式 创建asm方式很多主要有以下几种 1.Faking方式 2.裸设备方式 3.udev方式(它下面有两种方式) 3.1 uuid方式 3.2 raw方式(裸设备方式) 4.as ...

  3. 从实例学习 Go 语言、"基础与进阶" 学习笔记及心得体会、Go指南

    第一轮学习 golang "基础与进阶"学习笔记,Go指南练习题目解析.使用学习资料 <Go-zh/tour tour>.记录我认为会比较容易忘记的知识点,进行补充,整 ...

  4. docker安装elastic search和kibana

    安装目标 使用docker安装elastic search和kibana,版本均为7.17.1 安装es 1. docker pull 去dockerhub看具体版本,这里用7.17.1 docker ...

  5. php第一次实验个人博客网站的设计编写①

    先上效果图: 网页代码:index.html <!DOCTYPE html> <html lang="en"> <head>     <m ...

  6. Java语言学习day19--7月25日

    今日内容介绍1.继承2.抽象类3.综合案例---员工类系列定义 ###01继承的概述 *A:继承的概念 *a:继承描述的是事物之间的所属关系,通过继承可以使多种事物之间形成一种关系体系 *b:在Jav ...

  7. IO——字节缓冲流

    缓冲流:BufferedInputStream / BufferedOutputStream 提高IO效率,减少访问磁盘的次数 数据存储在缓冲区,调用flush将缓存区的内容写入文件中,也可以直接cl ...

  8. Linux获取本机公网IP,调整双节点主从服务的RPC调用逻辑

    简单记录一次双节点的之间的服务调用叭 ~ 现有: 服务A的双节点A1.A2 服务B的双节点B1.B2 服务A 和服务B 通过 Netty 实现 RPC 通信,可能会导致比较玄学的问题.如图: 要做到 ...

  9. 再见 FTP/SFTP!是时候拥抱下一代文件传输利器了!

    关注「开源Linux」,选择"设为星标" 回复「学习」,有我为您特别筛选的学习资料~ 两台电脑之间该如何传送档案,其实方法有超多种的,像是 FTP 或透过 SSH 方式来传送档案, ...

  10. RabbitMQ 3.9( 基础 )

    1.认识MQ 1.1.什么是MQ? MQ全称:message queue 即 消息队列 这个队列遵循的原则:FIFO 即 先进先出 队列里面存的就是message 1.2.为什么要用MQ? 1.2.1 ...