1 前言

  在反馈电路的分析中,如果前向放大倍数为Aopen,反馈系数为β,则闭环传递函数Aclose=Aopen/(1+Aopenβ),其中Aopenβ为环路增益。但是,在Aopen和β的计算中均要考虑负载效应,即反馈网络会成为前馈放大器的负载,前馈放大器也会成为反馈电路的负载。负载效应会使Aopen和β的计算变得复杂。另外,在计算环路增益时,也要特别考虑应该在何处断开反馈,使环路增益的计算更加准确。

  本文介绍一种不需要断开反馈环路的反馈分析方法——Bode 分析法。此方法由H. W. Bode 在他的书Network Analysis and Feedback Amplifier Design 中提出。

  首先,我们观察这样一件事情。在前馈放大器中肯定会有晶体管存在,也许在反馈网络中也有晶体管(也有可能没有),如果将其中一个晶体管的小信号模型重点画出,则其构成的反馈电路如图1所示。在图1中,反馈电路被建模为一个二端口网络,其中的压控电流源就是其中的一个晶体管。由于小信号模型是线性模型,因此vout与vin的关系可以写为vout=Av,closevin,其中Av,close为闭环电压增益。

图1 反馈电路的二端口模型

2 Bode分析法

  如果将晶体管的模型进行修改,将受控源修改为独立源,则其构成的反馈电路如图2所示。此时,电路中的激励除了vin之外还有i1,因此有

图2 将晶体管模型替换为独立源后的反馈电路二端口模型

其中,系数A、B、C和D可以由下面四个式子算出:

从上面的四个式子可以看出,系数A和C是在将晶体管电流强制置零时计算得出的,系数B和D是在输入置零时得出的。进一步分析可以得出,系数A代表电路的直接馈通增益,因为它是在将晶体管撤销后的电路增益,这个增益主要是由于反馈网络的直接馈通效应所引入的;系数D与该晶体管的返回比(return ratio)有关,因为它是输入为0情况下晶体管栅源电压v1与电流i1的比值,如果将v1乘上晶体管的跨导gm,则gmv1这个量代表栅源电压v1应当使晶体管产生多大的漏源电流,犹如i1经过反馈环路一圈后在原位置处又产生的电流大小,因此−gmv1/i1=–gmD可以理解为是“环路增益”(–gmD=环路增益是有条件的,稍后会通过例子说明),更准确的说法是该晶体管的return ratio。

  实际上i1并不是独立源,而是受控源,其大小为i1=gmv1。将i1=gmv1代入vout=Avin+Bi1和v1=Cvin+Di1,可以得到闭环增益的表达式

上式即为使用Bode分析法得出的闭环增益公式。我们观察上式可以得出如下结论:

(1)当gm=0时(gm=0代表将该晶体管撤掉),vout/vin=A。这更加直观地说明了系数A代表电路的直接馈通增益。

(2)如果A=0,则vout/vin=gmBC/(1–gmD),这个表达式十分类似于通过传统的反馈分析方法得出的闭环增益表达式vout/vin=Aopen/(1+loop gain)。事实上,如果电路中只存在一种反馈机制,并且我们所选择的晶体管处于反馈环路中,则gmBC就是开环增益,–gmD就是环路增益。另外,闭环增益表达式vout/vin=Aopen/(1+loop gain)实际上忽略了反馈网络的前馈效应,即忽略了系数A。


例1.利用Bode分析法计算图3所示电路的闭环电压增益(1种反馈机制,M2在反馈环路中,M1不参与反馈)

图3

  该电路为两级放大结构,第一级为source follower,第二级为CS stage。第一级的电阻RS引入了电流-电压反馈,M2在该反馈环路中,而M1在反馈环路外。我们首先选择晶体管M1进行分析。将M1的小信号电流i1置零,电阻RD上的电流为0,因此vout=0,系数A为

借助source follower的增益公式,可以得到

将vin置零,可以得到

另外,M1的return ratio为

闭环电压增益

  如果选择晶体管M2进行分析,则M2的电流i2置零时,流经RS的电流为0,因此v1=0,id1=0,vout=0,则有

当vin置零时,有

M2的return ratio为

闭环电压增益

  通过以上计算,并对比选择M1和选择M2计算的结果,可以得到如下结论:

(1)尽管选择不同晶体管计算得到的系数A~D可能不同,但是闭环增益的结果是相同的。

(2)不同晶体管的return ratio可能不同,这是由于不同的晶体管可能引入不同的反馈,或者一些晶体管不参与反馈(如本例子中的M1)。当晶体管处于反馈环路中时,则该晶体管的return ratio为该反馈环路的环路增益。如果某个晶体管的return ratio=0,则该晶体管不参与反馈。本例子中M2引入电流-电压反馈,将输出电流iout反馈为电压vf,与输入电压vin作差后得到电压ve,如图4所示。其中,前向放大倍数Aopen=iout/ve=gm2,反馈系数β=vf/iout=RS,因此环路增益loop gain=Aopenβ=gm2RS,与M2的return ratio相等。

图4 M2引入的电流-电压反馈



例2.利用Bode分析法计算图5所示电路的闭环增益(2种反馈机制,M1和M2处于不同反馈环路中)

图5

  该电路中,M1既参与局部的电流-电压反馈(与前一个例子中的source follower引入的反馈一样),又参与全局的电压-电流反馈,同时处在两个反馈环路中;而M2只参与全局的电压-电流反馈。

  如果选择M1进行计算,当i1=0时,流经电阻RS的电流为iin,可以得到A和C的值

将iin置零,可以得到B和D的值

M1的return ratio为

其中的gm1RS项与局部的电流-电压反馈有关,gm1RSgm2RD项与全局的电压-电流反馈有关。闭环增益为

  选择M2进行计算可以得到系数A~D的值为

M2的return ratio为

闭环增益为


3 Blackman 阻抗定理

  借助之前Bode 分析法的思想,如果我们将输出量定义为端口电压vin,将输入量定义为同一端口的电流iin,如图6所示,则有

图6 Blackman 阻抗定理推导所用的电路模型

这个端口的阻抗Zin=vin/iin,也可以看作是一种vin对于iin的“增益”,因此有

  为了使上式变得更加直观,我们定义开路环路增益(open-circuit loop gain,TOC)和短路环路增益(short-circuit loop gain,TSC)两个量。开路环路增益的定义为:当iin=0(端口开路)时,−gmv1/i1的值(回忆在第2节中,return ratio=−gmv1/i1可以理解为是环路增益),如图7所示。由于iin=0,则有

由此可以得到开路环路增益

图7 开路环路增益的计算

类似地,短路环路增益的定义为:当vin=0(端口短路)时,−gmv1/i1的值,如图8所示。由于vin=0,则有

由此可以得到短路环路增益

图8 短路环路增益的计算

  结合Zin、TOC和TSC的表达式,可以得到Blackman 阻抗定理:

其中A是当晶体管被撤掉时的端口阻抗,即开环端口阻抗。因此要想计算端口阻抗,只需要计算A、TOC和TSC即可。另外,我们知道:

(1)当反馈类型为电压-电压反馈或者电流-电压反馈时,反馈网络向输入端反馈电压信号,其与输入端串联,输入阻抗Zin=Zin,open(1+T),其中T为环路增益。

(2)当反馈类型为电压-电流反馈或者电流-电流反馈时,反馈网络向输入端反馈电流信号,其与输入端并联,输入阻抗Zin=Zin,open/(1+T)。

(3)当反馈类型为电压-电压反馈或者电压-电流反馈时,反馈网络检测输出端电压信号,其与输出端并联,输出阻抗Zout=Zout,open/(1+T)。

(4)当反馈类型为-电压反馈或者-电流反馈时,反馈网络检测输出端信号,其与输出端串联,输出阻抗Zout=Zout,open(1+T)。

将这四个阻抗表达式与Blackman 阻抗定理相比较,可知:

(1)在计算输入阻抗时,如果TOC=0,则反馈网络只向输入端反馈电压信号,反馈网络与输入端纯串联;如果TSC=0,则反馈网络只向输入端反馈电流信号,反馈网络与输入端纯并联

(2)在计算输出阻抗时,如果TSC=0,则反馈网络只检测输出电压信号,反馈网络与输入端纯并联;如果TOC=0,则反馈网络只检测输出电流信号,反馈网络与输入端纯串联

(3)如果TOC和TSC均不为0,则既有电压反馈,又有电流反馈。

4 渐进形式的闭环增益(Asymptotic Gain Form)

  由第2节中推导得到的闭环增益表达式

再进行延伸。当gm=0时,vout/vin=A,因此将A记为H0。下标0代表其为gm=0时的闭环增益。当gm→∞时,vout/vin=A–BC/D,因此将A–BC/D记为H,下标∞代表其为gm→∞时的闭环增益。又有return ratio的值T=–gmD,因此闭环增益可以表示为

因此得到闭环增益的渐进形式:

其中,H0的意义为直接馈通增益,H的意义为理想增益(即将放大器作虚短和虚断处理后,得到的增益1/β)。忽略反馈网络的直接馈通时(H0=0),vout/vin=HT/(1+T),这与我们所熟知的公式vout/vin=A/(1+T)=(1/β)×T/(1+T)十分符合。

反馈电路的Bode分析法的更多相关文章

  1. 2.计算机组成-数字逻辑电路 门电路与半加器 异或运算半加器 全加器组成 全加器结构 反馈电路 振荡器 存储 D T 触发器 循环移位 计数器 寄存器 传输门电路 译码器 晶体管 sram rom 微处理 计算机

    现代计算机的各个部件到底是如何通过逻辑电路构成的呢   半加器 我们说过了门电路 看似简单的三种门电路却是组成了整个逻辑电路的根基 真值表--其实就是根据输入输出状态枚举罗列出来的所有可能 比如有一台 ...

  2. 高级设计总监的设计方法论——5W1H需求分析法 KANO模型分析法

    本期开始进入设计方法论的学习,大湿自己也是边学边分享,算是巩固一遍吧: 另外这些理论基本都是交叉结合来应用于工作中,我们学习理论但不要拘泥于理论的框架中,掌握后要灵活运用一点- 这些理论一部分来自于我 ...

  3. 5whys分析法在美团工程师中的实践

    转载美团博客:https://tech.meituan.com/5whys-method.html 前言 网站的质量和稳定性对于用户和公司来说至关重要,但是在网站的快速发展过程中,由于各种原因导致事故 ...

  4. 闲聊系列之 5-why root cause分析法

    本篇参考: https://max.book118.com/html/2017/1126/141669829.shtm https://baike.baidu.com/item/5why%E5%88% ...

  5. 从Elo Rating System谈到层次分析法

    1. Elo Rating System Elo Rating System对于很多人来说比较陌生,根据wikipedia上的解释:Elo评分系统是一种用于计算对抗比赛(例如象棋对弈)中对手双方技能水 ...

  6. Procrustes Analysis普氏分析法

    选取N幅同类目标物体的二维图像,并用上一篇博文的方法标注轮廓点,这样就得到训练样本集: 由于图像中目标物体的形状和位置存在较大偏差,因此所得到的数据并不具有仿射不变性,需要对其进行归一化处理.这里采用 ...

  7. AX中四种库存ABC分析法原理研究

    库存ABC分类,简单的说就是抓大放小,是为了让我们抓住重点,用最大精力来管理最重要的物料,而对于不太重要的物料则可以用较少的精力进行管理.它和我们平常说的八二法则有异曲同工之妙. 既然要应用库存ABC ...

  8. 黑盒测试用例设计方法&理论结合实际 -> 边界值分析法

    一. 概念 边界值分析法就是对输入或输出的边界值进行测试的一种黑盒测试方法.通常边界值分析法是作为对等价类划分法的补充,这种情况下,其测试用例来自等价类的边界. 二. 边界值分析法的应用 根据大量的测 ...

  9. 帕累托分析法(Pareto Analysis)(柏拉图分析)

    帕累托分析法(Pareto Analysis)(柏拉图分析) ABC分类法是由意大利经济学家帕雷托首创的.1879年,帕累托研究个人收入的分布状态图是地,发现少数人收入占全部人口收入的大部分,而多数人 ...

  10. SWOT分析法

    SWOT(Strengths Weakness Opportunity Threats)分析法,又称为态势分析法或优劣势分析法,用来确定企业自身的竞争优势(strength).竞争劣势(weaknes ...

随机推荐

  1. Codeforces Round #816 (Div. 2)/CodeForces1715

    CodeForces1715 Crossmarket 解析: 题目大意 有一个 \(n \times m\) 的空间,Stanley 需要从左上角到右下角:Megan 则需要从左下角到右上角.两人可以 ...

  2. Git 02: git管理码云代码仓库 + IDEA集成使用git

    Git项目搭建 创建工作目录与常用指令 工作目录(WorkSpace)一般就是你希望Git帮助你管理的文件夹,可以是你项目的目录,也可以是一个空目录,建议不要有中文. 日常使用只要记住下图6个命令: ...

  3. Centos镜像下载

    1.进入官网,并点击下图所示的红框(alternative downloads) 官网网址:https://www.centos.org/download/  2.在往下翻,可以看到如下图的历史版本, ...

  4. 【lwip】07-链路层收发以太网数据帧源码分析

    目录 前言 7.1 链路层概述 7.2 MAC地址的基本概念 7.3 以太网帧结构 7.4 以太网帧结构 7.5 以太网帧报文数据结构 7.6 发送以太网数据帧 7.7 接收以太网数据帧 7.8 虚拟 ...

  5. Java多线程-ThreadPool线程池-2(四)

    线程池是个神器,用得好会非常地方便.本来觉得线程池的构造器有些复杂,即使讲清楚了对今后的用处可能也不太大,因为有一些Java定义好的线程池可以直接使用.但是(凡事总有个但是),还是觉得讲一讲可能跟有助 ...

  6. 记录因Sharding Jdbc批量操作引发的一次fullGC

    周五晚上告警群突然收到了一条告警消息,点开一看,应用 fullGC 了. 于是赶紧联系运维下载堆内存快照,进行分析. 内存分析 使用 MemoryAnalyzer 打开堆文件 mat 下载地址:htt ...

  7. 数组还是HashSet?

    我记得大约在半年前,有个朋友问我一个问题,现在有一个选型: 一个性能敏感场景,有一个集合,需要确定某一个元素在不在这个集合中,我是用数组直接Contains还是使用HashSet<T>.C ...

  8. hutool包的DateUtil工具类

    [首先引入依赖 ] <dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-core& ...

  9. 深入理解Golang 闭包,直通面试

    大家好 今天为大家讲解的面试专题是: 闭包. 定义 闭包在计算机科学中的定义是:在函数内部引用了函数内部变量的函数. 看完定义后,我陷入了沉思...确实,如果之前没有接触过闭包或者对闭包不理解的话,这 ...

  10. Vue3 企业级优雅实战 - 组件库框架 - 7 组件库文档的开发和构建

    该系列已更新文章: 分享一个实用的 vite + vue3 组件库脚手架工具,提升开发效率 开箱即用 yyg-cli 脚手架:快速创建 vue3 组件库和vue3 全家桶项目 Vue3 企业级优雅实战 ...