POJ 3233 Matrix Power Series (矩阵分块,递推)
矩阵乘法是可以分块的,而且幂的和也是具有线性的。
不难得到 Si = Si-1+A*Ai-1,Ai = A*Ai-1。然后矩阵快速幂就可以了。
/*********************************************************
* ------------------ *
* author AbyssalFish *
**********************************************************/
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<queue>
#include<vector>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<algorithm>
#include<cmath>
#include<ctime>
using namespace std; typedef long long ll;
typedef vector<int> row;
typedef vector<row> mat; int n, k, M; mat Mul;
mat &operator *(mat &A, mat& B)
{
mat &R = Mul;
R.assign(n,row(n));
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
for(int k = ; k < n; k++){
R[i][j] = (R[i][j] +A[i][k]*B[k][j])%M; }
}
} return R;
} //#define LOCAL
#ifdef LOCAL
void censor(mat &B)
{
for(auto r: B){
for(int c: r)
cout<<c<<' ';
cout<<endl;
}
}
#endif mat operator ^(mat A,int q)
{
mat Re(n,row(n));
for(int i = ; i < n; i++) Re[i][i] = ;
while(q){
if(q&) Re = Re*A;
A = A*A;
q >>= ;
}
return Re;
} int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
int nn; scanf("%d%d%d",&nn,&k,&M);
n = *nn;
mat A(nn,row(nn));
for(int i = ; i < nn; i++){
for(int j = ; j < nn; j++){
scanf("%d",&A[i][j]);
}
}
mat B(n,row(n));
for(int i = ; i < nn; i++) {
B[i][i] = ;
copy(A[i].begin(),A[i].end(),B[i].begin()+nn);
copy(A[i].begin(),A[i].end(),B[i+nn].begin()+nn);
}
B = B^k;
for(int i = ; i < nn; i++){
for(int j = ; j < nn; j++){
printf("%d%c",B[i][j+nn],j==nn-?'\n':' ');
}
}
#ifdef LOCAL
cout<<"rum time:"<<clock()<<"ms"<<endl;
#endif // LOCAL
return ;
}
POJ 3233 Matrix Power Series (矩阵分块,递推)的更多相关文章
- Poj 3233 Matrix Power Series(矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...
- poj 3233 Matrix Power Series(矩阵二分,高速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15739 Accepted: ...
- POJ 3233 Matrix Power Series(矩阵高速功率+二分法)
职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9. 这 ...
- POJ 3233 Matrix Power Series 矩阵快速幂
设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...
- poj 3233 Matrix Power Series 矩阵求和
http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- POJ 3233 Matrix Power Series(矩阵等比求和)
题目链接 模板题. #include <cstdio> #include <cstring> #include <iostream> #include <ma ...
- 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series
poj 1575 Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...
- POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K To ...
- POJ 3233 Matrix Power Series (矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 11954 Accepted: ...
随机推荐
- es6实现类的多重继承
1.类的多种继承,将多个类的接口“混入”(mix in)另一个类. function mix(...mixins) { class Mix { // 如果不需要拷贝实例属性下面这段代码可以去掉 // ...
- 【转】vs发布msi程序详解
源地址:http://wenku.baidu.com/link?url=MV1Mf7IukCZ0cab8AzXQoQ3MAXeUAHGz5b2IuUL4Kw-hCI90ZyBKXwKeQA3t3-SV ...
- 清北刷题冲刺 11-01 p.m
轮换 #include<iostream> #include<cstdio> #include<cstring> #define maxn 1010 using n ...
- 洛谷P2534 [AHOI2012]铁盘整理
P2534 [AHOI2012]铁盘整理 题目描述 输入输出格式 输入格式: 共两行.第一行为铁盘个数N(1<=N<=50),第二行为N个不同的正整数,分别为从上到下的铁盘的半径R.(1& ...
- Kubernetes基本概念之Name和NameSpace
在Kubernetes中,所有对象都会被指定一个唯一的Name和UID. 用户还可以指定一些不要求唯一性的数据附加到对象上,例如Label和Annotation. 1. Name Name是创建一个K ...
- 洛谷 P1551 亲戚(并查集模板)
嗯... 题目链接:https://www.luogu.org/problemnew/show/P1551 思路: 很显然地我们会发现,这是一道并查集的模板题,并且是考察了并查集中的”并“和”查“的操 ...
- linux下apache无法启动之(httpd not running, trying to st)
这突然接手的服务器,本来是没什么事的,可是因为机房的问题,需要将服务器迁回来,结果可想而知,关机重启了,其中有一台估计诚心给我过不去,待配置好ip并重启了服务后,发现apache无法正常启动了! 先还 ...
- little w and Soda(思维题)
链接:https://ac.nowcoder.com/acm/contest/297/A 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5242 ...
- 01.Spring Ioc 容器
基本概念 Spring 的 Ioc 容器,通常也称应用上下文.它包含了两个概念 Ioc 和 容器: 容器:顾名思义就是用来装东西的,在 Spring 中容器里盛放的就是各种各样的 Bean.既然装了东 ...
- Ubuntu系统下同时打开多个终端窗口的软件
sudo apt-get install Terminator