所谓Huffman树,就是叶子结点带权的\(K\)叉树,假设每个叶子的权值为\(v\),到根的距离为\(dep\),那么最小化\(\sum v_i*dep_i\)就是\(Huffman\)树的拿手好戏。

为了最小化这个值,显然我们应该尽量让权值大的叶子深度浅,合并果子就是一个典型\(2\)叉\(Huffman\)树问题。

那么对于\(k\)叉\(Huffman\)树呢?

我们以\(3\)叉\(Huffman\)树为例,有这么\(6\)个数:\(1,2,3,5,8,9\)

按照合并果子这题的思路,我们应该先花\(6\)体力合并\(1,2,3\),新序列为:\(6,5,8,9\)

然后花\(19\)体力合并\(5,6,8\),新序列为:\(19,9\)

最后花\(28\)体力合并\(19,9\),新序列是\(28\),一共用的体力为\(53\)

但是我们换一种方式合并:

\(1,2,3,5,8,9\)

\(3,3,5,8,9\)

\(11,8,9\)

\(28\)

一共用了\(42\)体力。

那么问题就出现了,显然对于\(2\)叉\(Huffman\)树的贪心策略不再适用于\(k\)叉\(Huffman\)树。

但是,是真的不适用么?

仔细考虑上面两个例子,在用了\(53\)体力的例子里,我们最后一步合并了\(19,9\),但其实我们还可以假设有一个权值为\(0\)的点在这一步被合并了。

但在用了\(42\)体力的例子里,我们第一步就把权值\(0\)给安排了。

所以对于\(2\)叉\(Huffman\)树的贪心策略还是有用的,不过我们忽视了权值为\(0\)的结点。因为\(2\)叉\(Huffman\)树怎么建都不会存在某一步被合并的结点少于\(2\),但是\(k\)叉\(Huffman\)树不一样,它必须满足\((n-1)mod(k-1)=0\)才会每一步合并的结点都不少于\(k\)。因为每次合并都会减少\(k-1\)个结点,一共会减少\(n-1\)个结点。如果不满足上述等式,我们只需要不断添加权值为\(0\)的结点直到它满足为止即可。

关于\(k\)叉\(Huffman\)树的建立,也可以按照合并果子一样用堆辅助即可。

浅谈Huffman树的更多相关文章

  1. 浅谈B+树索引的分裂优化(转)

    http://www.tamabc.com/article/85038.html 从MySQL Bug#67718浅谈B+树索引的分裂优化   原文链接:http://hedengcheng.com/ ...

  2. 浅谈oracle树状结构层级查询之start with ....connect by prior、level及order by

    浅谈oracle树状结构层级查询 oracle树状结构查询即层次递归查询,是sql语句经常用到的,在实际开发中组织结构实现及其层次化实现功能也是经常遇到的,虽然我是一个java程序开发者,我一直觉得只 ...

  3. 浅谈oracle树状结构层级查询测试数据

    浅谈oracle树状结构层级查询 oracle树状结构查询即层次递归查询,是sql语句经常用到的,在实际开发中组织结构实现及其层次化实现功能也是经常遇到的,虽然我是一个java程序开发者,我一直觉得只 ...

  4. (转)浅谈trie树

    浅谈Trie树(字典树)         Trie树(字典树) 一.引入 字典是干啥的?查找字的. 字典树自然也是起查找作用的.查找的是啥?单词. 看以下几个题: 1.给出n个单词和m个询问,每次询问 ...

  5. 【转】Senior Data Structure · 浅谈线段树(Segment Tree)

    本文章转自洛谷 原作者: _皎月半洒花 一.简介线段树 ps: _此处以询问区间和为例.实际上线段树可以处理很多符合结合律的操作.(比如说加法,a[1]+a[2]+a[3]+a[4]=(a[1]+a[ ...

  6. 浅谈B树

    B树即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如:    ...

  7. 浅谈 trie树 及其实现

    定义:又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构, 如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树. 核心思想:是空间换时间.利用字符串的公共前缀来降低查询时间的开 ...

  8. 浅谈Trie树(字典树)

          Trie树(字典树) 一.引入 字典是干啥的?查找字的. 字典树自然也是起查找作用的.查找的是啥?单词. 看以下几个题: 1.给出n个单词和m个询问,每次询问一个单词,回答这个单词是否在单 ...

  9. [转] 浅谈Trie树(字典树)

    原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/6290732.html Trie树(字典树) 一.引入 字典是干啥的?查找字的. 字典树自然也是起查找 ...

随机推荐

  1. CAFFE学习笔记(四)将自己的jpg数据转成lmdb格式

    1 引言 1-1 以example_mnist为例,如何加载属于自己的测试集? 首先抛出一个问题:在example_mnist这个例子中,测试集是人家给好了的.那么如果我们想自己试着手写几个数字然后验 ...

  2. CAFFE学习笔记(三)在VS2013下生成需要的exe文件

    如我们所知,CAFFE_ROOT下有一个文件夹叫tools,里面中有许多cpp文件,它们各自有其不同的功能.但是很显然,当我们要完成某样工作时,我们是不能直接用cpp文件的,只能用exe文件.如何利用 ...

  3. linux c编程:信号(五) sigsuspend

    更改进程的信号屏蔽字可以阻塞所选择的信号,或解除对它们的阻塞.使用这种技术可以保护不希望由信号中断的代码临界区.如果希望对一个信号解除阻塞,然后pause等待以前被阻塞的信号发生,则又将如何呢?假定信 ...

  4. 程序运行之ELF文件结构

    ELF目标文件格式的最前部是ELF文件头.包含了整个文件的基本属性.比如ELF文件版本,目标机器型号,程序入口地址等.然后是ELF的各个段,其中ELF文件中与段有关的重要结构就是段表.段表描述了ELF ...

  5. Cordova-安装Cordova过程详细解

    官方网站Apache Cordova 前提是你电脑上 1:全局安装了Node 2:全局安装了npm 3:安装了java,并配置好环境 4:下载安装好android-sdk,并配好环境,注意安卓虚拟机可 ...

  6. python 统计单词出现次数

    #use python3.6 import re from collections import Counter FILESOURCE = './abc.txt' def getMostCommonW ...

  7. C#线程使用学习

    线程的入口函数可以不带输入参数,也可以带输入参数: form1.cs using System; using System.Collections.Generic; using System.Comp ...

  8. next()和nextLine()的区别

    众所周知,在Java中输入字符串有两种方法,就是next()和nextLine(),今天研究了一下其中的区别. 首先,nextLine()的输入是碰到回车就终止输入,而next()方法是碰到空格,回车 ...

  9. 股票技术指标中的VOL,KDJ,MACD,OBV,VR,DMA分别代表什么意思?很关键,谢谢

    http://zhidao.baidu.com/link?url=glKK7n0JUgqgrvfx2Gzd937-5zZg1bC615MwAp0P_mrYDytnMUpjoOQgYU871ny8St1 ...

  10. LeetCode:用HashMap解决问题

    LeetCode:用HashMap解决问题 Find Anagram Mappings class Solution { public int[] anagramMappings(int[] A, i ...