Arc077_E Guruguru
题目大意
有$m$个点编号从小到大按照顺时针编成了一个环,有一枚棋子,每次移动可以选择顺时针移动到下一个或者直接移动到编号为$x$的点,现在有$n-1$次数操作,第$i$次要把棋子从第$A_i$移到第$A_{i+1}$号节点,可以在初始时自由设定$x$,求每次操作移动步数之和的最小值。
题解
$x$对一次移动有意义当且仅当$x$被直接操作经过不在起点上,其中贡献为$起点到终点的距离$+1$-$x$到终点的距离$。
考虑设$x$能减少多少代价,维护$x$取每一个位置时能使总代价减少多少,对于一段操作区间,当$x=l+1,x=l+2...x=r$的差异恰好是一段等差数列,首相为$0$,公差为$1$,可以使用二次差分解决,最后只需要枚举每一个位置记答案最值即可。
复杂度$O(n+m)$。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define M 200020
using namespace std;
namespace IO{
const int BS=(1<<21)+3; LL Top=0; char Buffer[BS],*HD,*TL,SS[20];
char Getchar(){if(HD==TL){TL=(HD=Buffer)+fread(Buffer,1,BS,stdin);} return (HD==TL)?EOF:*HD++;}
int read(){
int nm=0; char cw=Getchar(); for(;!isdigit(cw);cw=Getchar());
for(;isdigit(cw);cw=Getchar()) nm=nm*10+(cw-'0'); return nm;
}
} using namespace IO;
int n,m,dt[M]; LL tot,s[M],ans;
int main(){
n=read(),m=read();
for(register int last=read(),i=1,x;i<n;last=x,i++){
x=read(),dt[last+2]++;
if(last<x) dt[x+1]--,tot+=x-last,s[x+1]-=x-last-1;
else tot+=x+m-last,dt[1]++,dt[x+1]--,s[1]+=m-last-1,s[x+1]-=m+x-last-1;
} ans=tot;
for(register int i=1;i<=m;i++) dt[i]+=dt[i-1],s[i]+=s[i-1]+dt[i],ans=min(ans,tot-s[i]);
printf("%lld\n",ans); return 0;
}
Arc077_E Guruguru的更多相关文章
- guruguru
6576: guruguru 时间限制: 1 Sec 内存限制: 128 MB提交: 28 解决: 12[提交] [状态] [讨论版] [命题人:admin] 题目描述 Snuke is buyi ...
- AtCoder Regular Contest 077 E - guruguru
https://arc077.contest.atcoder.jp/tasks/arc077_c 有m个点围成一个圈,按顺时针编号为1到m,一开始可以固定一个位置x,每次操作可以往顺时针方向走一步或直 ...
- AtCoder Regular Contest 077 E - guruguru 线性函数 前缀和
题目链接 题意 灯有\(m\)个亮度等级,\(1,2,...,m\),有两种按钮: 每次将亮度等级\(+1\),如\(1\rightarrow 2,2\rightarrow 3,...,m-1\rig ...
- atcode E - guruguru(思维+前缀)
题目链接:http://arc077.contest.atcoder.jp/tasks/arc077_c 题解:一道思维题.不容易想到类似区间求和具体看一下代码. #include <iostr ...
- AT2650 [ARC077C] guruguru
可以发现,如果我们枚举每个理想亮度 \(X\) 然后再求在这个理想亮度情况下的答案是非常难维护的. 不妨反过来,考虑每个位置 \(i, i + 1\) 之间对每个理想亮度 \(X\) 减少次数的贡献. ...
- 转iOS中delegate、protocol的关系
iOS中delegate.protocol的关系 分类: iOS Development2014-02-12 10:47 277人阅读 评论(0) 收藏 举报 delegateiosprocotolc ...
- protocol(协议) 和 delegate(委托)也叫(代理)---辨析
protocol和delegate完全不是一回事. 协议(protocol),(名词)要求.就是使用了这个协议后就要按照这个协议来办事,协议要求实现的方法就一定要实现. 委托(delegate),(动 ...
- AtCoder Regular Contest 077
跟身在国外的Marathon-fan一起打的比赛,虽然最后没出F但还是涨分了. C - pushpush 题意:n次操作,每次往一个序列后面塞数,然后把整个序列翻转. #include<cstd ...
- 【AtCoder】ARC077
C - pushpush 如果是按下标说的话 如果是偶数个 那么是 \(N,N - 2,N - 4...1,3,5...N - 1\) 如果是奇数个 \(N,N - 2,N - 4...2,4,6.. ...
随机推荐
- spring mvc 伪静态处理
spring mvc 伪静态处理 @RequestMapping(value = JsonUrlCommand.webshare_get_opuss+"/u{u:[\\w\\W]+}p{p: ...
- springMVC的注释集合
SpringMVC的工作原理 主要核心实现是DispatcherServlet. 一般来讲客户端对服务器发送请求,是由DispatcherServlet控制的,DispatcherServlet接受到 ...
- XmlDocument和XDocument转String
1:XDocument转String直接使用ToString();XNode里面重写了ToString()方法 2:XmlDocument转String需要写代码 using System; usin ...
- OLTP和OLAP
1 OLTP和OLAP online transaction processing,联机事务处理.业务类系统主要供基层人员使用,进行一线业务操作,通常被称为联机事务处理. online analyti ...
- 在VS2017环境中编译libxml2库
libxml2库编译 1.下载libxml2,官网是:http://www.xmlsoft.org/downloads.html, 我下载的版本是:libxml2-sources-2.9.7.tar. ...
- linux c编程:Posix共享内存区
Posix共享内存区:共享内存是最快的可用IPC形式.它允许多个不相关(无亲缘关系)的进程去访问同一部分逻辑内存.如果需要在两个进程之间传输数据,共享内存将是一种效率极高的解决方案.一旦这样的内存区映 ...
- 从HttpServletRequest获取POST数据的代码
我们经常需要从HttpServletRequest对象获取POST请求的数据,下面给出简练的代码共大家参考 StringBuffer jb = new StringBuffer(); String l ...
- 高性能javascript学习总结(1)--加载与运行
一.脚本的位置 我们知道,一个<script>标签可以放在 HTML 文档的<head>或<body>标签中,但是浏览器是怎么加载和执行这些java ...
- JS实现下拉列表的二级联动
这个是简单也是最基本的下拉框联动的示例,这个示例主要针对那些只有二级联动,且第一级是固定的选项,第二级的内容也比较简单,不刷新的联动,动态的联动需要检索数据库,这个对不需要更新的二级联动比较实用.这里 ...
- webpack打包笔记
optimist是一个node库,将webpack.config.js与shell参数整合成options对象 options对象包含之后构建的重要信息,类似于webpack.config.js we ...