[Pytorch] pytorch笔记 <一>
pytorch笔记 - torchvision.utils.make_grid
torchvision.utils.make_grid
torchvision.utils.make_grid(tensor, nrow=8, padding=2, normalize=False, range=None, scale_each=False)
# 将一小batch图片变为一张图。nrow表示每行多少张图片的数量。
# 给一个batch为4的图片,h和w分别为32,channel为3,看看结果
images,labels = dataiter.next()
print(images.shape)
#torch.Size([4, 3, 32, 32]) bchw
print(torchvision.utils.make_grid(images).shape)
#torch.Size([3, 36, 138])
怎么理解这个输出结果呢?第一个dim当然就是channel,因为合并成一张图片了嘛,所以batch这个维度就融合了,变成了chw,这里c还是原来的channel数,h比原来增加了4,w = 32*4 + 10,c很好理解,那么为什么h增加了4,w增加了10呢?
我想办法把batch_size调整成了3,结果如下:
#torch.Size([3, 3, 32, 32])
#torch.Size([3, 36, 104])
通过结果才看到,原来函数参数里还有个padding和nrow。直接去官网查文档:
- tensor (Tensor or list) – 4D mini-batch Tensor of shape (B x C x H x W) or a list of images all of the same size.
- nrow (int, optional) – Number of images displayed in each row of the grid. The Final grid size is (B / nrow, nrow). Default is 8.
- padding (int, optional) – amount of padding. Default is 2.
- normalize (bool, optional) – If True, shift the image to the range (0, 1), by subtracting the minimum and dividing by the maximum pixel value.
- range (tuple, optional) – tuple (min, max) where min and max are numbers, then these numbers are used to normalize the image. By default, min and max are computed from the tensor.
- scale_each (bool, optional) – If True, scale each image in the batch of images separately rather than the (min, max) over all images.
- pad_value (float, optional) – Value for the padded pixels.
很明显,当batch为3的时候,w应该为3*32 = 96,但是我们考虑到每张图片的padding其实是2,因此,每张图片其实变成了36*36的图片,所以最终应该为w = 36/* 3 =108才对呀?
显然上面的想法还是不对,思考了一会,算是想明白了。
三张图片,padding在水平方向并没有每张图片都padding,而是两张图片之间只有一个padding,这样3张图片空隙有两个,加上最左和最右,水平方向上其实是4* 2 =8,所以w增加了8,这样96 + 8 = 104 就对了。同理,竖直方向上也是这样处理的。
[Pytorch] pytorch笔记 <一>的更多相关文章
- 莫烦pytorch学习笔记(二)——variable
.简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...
- 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )
CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...
- pytorch学习笔记(十二):详解 Module 类
Module 是 pytorch 提供的一个基类,每次我们要 搭建 自己的神经网络的时候都要继承这个类,继承这个类会使得我们 搭建网络的过程变得异常简单. 本文主要关注 Module 类的内部是怎么样 ...
- 《CMake实践》笔记二:INSTALL/CMAKE_INSTALL_PREFIX
<CMake实践>笔记一:PROJECT/MESSAGE/ADD_EXECUTABLE <CMake实践>笔记二:INSTALL/CMAKE_INSTALL_PREFIX &l ...
- jQuery源码笔记(二):定义了一些变量和函数 jQuery = function(){}
笔记(二)也分为三部分: 一. 介绍: 注释说明:v2.0.3版本.Sizzle选择器.MIT软件许可注释中的#的信息索引.查询地址(英文版)匿名函数自执行:window参数及undefined参数意 ...
- Mastering Web Application Development with AngularJS 读书笔记(二)
第一章笔记 (二) 一.scopes的层级和事件系统(the eventing system) 在层级中管理的scopes可以被用做事件总线.AngularJS 允许我们去传播已经命名的事件用一种有效 ...
- Python 学习笔记二
笔记二 :print 以及基本文件操作 笔记一已取消置顶链接地址 http://www.cnblogs.com/dzzy/p/5140899.html 暑假只是快速过了一遍python ,现在起开始仔 ...
- WPF的Binding学习笔记(二)
原文: http://www.cnblogs.com/pasoraku/archive/2012/10/25/2738428.htmlWPF的Binding学习笔记(二) 上次学了点点Binding的 ...
- webpy使用笔记(二) session/sessionid的使用
webpy使用笔记(二) session的使用 webpy使用系列之session的使用,虽然工作中使用的是django,但是自己并不喜欢那种大而全的东西~什么都给你准备好了,自己好像一个机器人一样赶 ...
- AJax 学习笔记二(onreadystatechange的作用)
AJax 学习笔记二(onreadystatechange的作用) 当发送一个请求后,客户端无法确定什么时候会完成这个请求,所以需要用事件机制来捕获请求的状态XMLHttpRequest对象提供了on ...
随机推荐
- vmware 三种连接方式 如何设置独立ip
转载:https://blog.csdn.net/xiaoyangsavvy/article/details/73718473
- c++从txt中读取数据,数据并不是一行路径(实用)
#include <iostream>#include <fstream>#include <string> using namespace std; //输出空行 ...
- spring mvc源码分析
1.传统xml配置方式 web.xml里面配置:org.springframework.web.servlet.DispatcherServlet,处理项目的spring配置文件:classpath* ...
- 使用WindowsAPI播放PCM音频
这一篇文章同上一篇<使用WindowsAPI获取录音音频>原理具有相似之处,不再详细介绍函数与结构体的参数 1. waveOutGetNumDevs 2. waveOutGetDevCap ...
- (转)轻松应对IDC机房带宽突然暴涨问题
原文:http://blog.51cto.com/oldboy/909696
- LeetCode 704.二分查找(C++)
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1. 示例 1: 输入: num ...
- Javascript兼容性问题汇总
一.属性相关 我们通常把特征(attribute)和属性(property)统称为属性,但是他们确实是不同的概念, 特征(attribute)会表现在HTML文本中,对特征的修改一定会表现在元素的ou ...
- webkit技术--网页渲染原理
Webkit渲染 Webkit 是苹果发起的一个开源项目,后来谷歌用这个项目以 webkit 创建了一个新的项目 Chromium,我们平常用的 Chrome 浏览器一般都是基于 Chromium 开 ...
- spring的IOC和AOP详细讲解
1.解释spring的ioc? 几种注入依赖的方式?spring的优点? IOC你就认为他是一个生产和管理bean的容器就行了,原来需要在调用类中new的东西,现在都是有这个IOC容器进行产生,同时, ...
- c# 截取picturebox部分图像
Bitmap bit = new Bitmap(renderImage.Width, renderImage.Height); using (Graphics g = Graphics.FromIma ...