[SCOI2005]骑士精神

描述

 在一个\(5×5\)的棋盘上有\(12\)个白色的骑士和\(12\)个黑色的骑士, 且有一个空位。在任何时候一个骑士都能按照骑

士的走法(它可以走到和它横坐标相差为\(1\),纵坐标相差为\(2\)或者横坐标相差为\(2\),纵坐标相差为\(1\)的格子)移动到空

位上。 给定一个初始的棋盘,怎样才能经过移动变成如下目标棋盘: 为了体现出骑士精神,他们必须以最少的步

数完成任务。

输入

第一行有一个正整数\(T(T<=10)\),表示一共有\(N\)组数据。接下来有\(T\)个\(5×5\)的矩阵,\(0\)表示白色骑士,\(1\)表示黑色骑 士,\(*\)表示空位。两组数据之间没有空行。

输出

 对于每组数据都输出一行。如果能在\(15\)步以内(包括\(15\)步)到达目标状态,则输出步数,否则输出-\(1\)。

输入样例 1:

2
10110
01*11
10111
01001
00000
01011
110*1
01110
01010
00100

输出样例1:

7
-1

题解

题意:给你一个初始棋盘,要求用最少的步数移动马达到如上图的目标状态(要求棋盘中的马只能走“日”)。

咱们先抛开\(IDA^*\),先如何优化爆搜;

这里的马和象棋里的马走法相同,但题目中要求让马走,但是要是马的话,搜索分支比较多,所以我们要考虑让空格走(很显然吧)。

下面步入正题:

\(IDA^*\)就是带有迭代加深和估价函数优化的搜索。

可能某些人对以上两个名词很陌生,下面一些前置知识可能会带你透彻一下。

前置知识1:迭代加深
定义:

每次限定一个\(maxdep\)最大深度,使搜索树的深度不超过\(maxdep\)。

	for(R int maxdep=1;maxdep<=题目中给的最大步数;maxdep++){
dfs(0,maxdep);//0为出入函数中当前步数,maxdep为传入的最大深度。
if(success)break;//如果搜索成功则会在dfs函数中将success赋值为1。
}
使用范围:

1.在有一定的限制条件时使用(例如本题中“如果能在\(15\)步以内(包括\(15\)步)到达目标状态,则输出步数,否则输出\(-1\)。“)。

2.题目中说输出所以解中的任何一组解。

为什么能够降低时间复杂度:

我们可能会在一个没有解(或解很深的地方无限递归然而题目中要求输出任何的一组解),所以我们限制一个深度,让它去遍历更多的分支,去更广泛地求解,(其实和\(BFS\)有异曲同工之妙)。

前置知识2:估价函数
定义:

\(f(n)=g(n)+h(n)\)

其中\(f(n)\)是节点的估价函数,\(g(n)\)是现在的实际步数,\(h(n)\)是对未来步数的最完美估价(“完美”的意思是可能你现实不可能实现,但你还要拿最优的步数去把\(h(n)\)算出来,可能不太好口胡,可以参考下面的实例)。

应用:
    void dfs(int dep,int maxdep){
if(evaluate()+dep>maxdep)return;
//evaluate函数为对未来估价的函数,若未来估价加实际步数>迭代加深的深度则return。
if(!evaluate){
success=1;
printf("%d\n",dep);
return;
}
......
}
前置知识3:\(A^*\)和\(IDA^*\)的区别

\(A^*\)是用于对\(BFS\)的优化;

\(IDA^*\)是对结合迭代加深的\(DFS\) 的优化。

本质上只是在\(BFS\)和\(DFS\)上加上了一个估价函数。

何时使用因题而定:

\(A^*\)([SCOI2007]k短路);\(IDA^*\)([SCOI2005]骑士精神UVA11212 Editing a Book 就是上面的两道题)。

前置知识毕!!!

现在就是要想一个比较好的估价函数(若估价函数不好的话,优化效率就并不高,例如若估价函数一直为0,那就是爆搜)。

我们可以想一下,每次空白格子和黑白棋子交换,最优的情况就是每次都把黑白棋子移动到目标格子。

那么你的估价函数就出来了:

    const int goal[7][7]={
{0,0,0,0,0,0},
{0,1,1,1,1,1},
{0,0,1,1,1,1},
{0,0,0,2,1,1},
{0,0,0,0,0,1},
{0,0,0,0,0,0}
};
inline int evaluate(){
R int cnt=0;
for(R int i=1;i<=5;i++)
for(R int j=1;j<=5;j++)
if(mp[i][j]!=goal[i][j])cnt++;
return cnt;
}

下面就是爆搜了:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cctype>
#define ll long long
#define R register
using namespace std;
template<typename T>inline void read(T &a){
char c=getchar();T x=0,f=1;
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
a=f*x;
}
int n,m,t,mp[7][7],stx,sty,success;
char ch;
const int dx[]={0,1,1,-1,-1,2,2,-2,-2};
const int dy[]={0,2,-2,2,-2,1,-1,1,-1};
const int goal[7][7]={
{0,0,0,0,0,0},
{0,1,1,1,1,1},
{0,0,1,1,1,1},
{0,0,0,2,1,1},
{0,0,0,0,0,1},
{0,0,0,0,0,0}
};
inline int evaluate(){
R int cnt=0;
for(R int i=1;i<=5;i++)
for(R int j=1;j<=5;j++)
if(mp[i][j]!=goal[i][j])cnt++;
return cnt;
}
inline int safe(R int x,R int y){
if(x<1||x>5||y<1||y>5)return 0;
return 1;
}
inline void A_star(R int dep,R int x,R int y,R int maxdep){
if(dep==maxdep){
if(!evaluate())success=1;
return;
}
for(R int i=1;i<=8;i++){
R int xx=x+dx[i];
R int yy=y+dy[i];
if(!safe(xx,yy))continue;
swap(mp[x][y],mp[xx][yy]);
int eva=evaluate();
if(eva+dep<=maxdep)
A_star(dep+1,xx,yy,maxdep);
swap(mp[x][y],mp[xx][yy]);//回溯
}
}
int main(){
read(t);
while(t--){
success=0;
for(R int i=1;i<=5;i++){
for(R int j=1;j<=5;j++){
cin>>ch;
if(ch=='*')mp[i][j]=2,stx=i,sty=j;//记录起点即为空白格子
else mp[i][j]=ch-'0';
}
}
if(!evaluate()){printf("0\n");continue;}
for(R int maxdep=1;maxdep<=15;maxdep++){
A_star(0,stx,sty,maxdep);
if(success){printf("%d\n",maxdep);goto ZAGER;}
}
printf("-1\n");
ZAGER:;
}
return 0;
}

【洛谷2324】[SCOI2005]骑士精神 IDA*的更多相关文章

  1. 洛谷 P2324 [SCOI2005]骑士精神 解题报告

    P2324 [SCOI2005]骑士精神 题目描述 输入输出格式 输入格式: 第一行有一个正整数T(T<=10),表示一共有N组数据.接下来有T个5×5的矩阵,0表示白色骑士,1表示黑色骑士,* ...

  2. 洛谷P2324 [SCOI2005] 骑士精神

    题目 方法很多,最经典的是用搜索的算法,也就是\(IDA*\)算法搜索. \(IDA*\)算法是每次规定一个搜索深度,并在搜索的时候限制该搜索深度,从而达到把深搜的优点和广搜的优点结合起来优化时间的一 ...

  3. 洛谷 P2324 [SCOI2005]骑士精神

    题目描述 输入输出格式 输入格式: 第一行有一个正整数T(T<=10),表示一共有N组数据.接下来有T个5×5的矩阵,0表示白色骑士,1表示黑色骑士,*表示空位.两组数据之间没有空行. 输出格式 ...

  4. [BZOJ 1085] [SCOI2005] 骑士精神 [ IDA* 搜索 ]

    题目链接 : BZOJ 1085 题目分析 : 本题中可能的状态会有 (2^24) * 25 种状态,需要使用优秀的搜索方式和一些优化技巧. 我使用的是 IDA* 搜索,从小到大枚举步数,每次 DFS ...

  5. bzoj 1085: [SCOI2005]骑士精神 IDA*

    题目链接 给一个图, 目标位置是确定的, 问你能否在15步之内达到目标位置. 因为只有15步, 所以直接ida* #include<bits/stdc++.h> using namespa ...

  6. bzoj1085 [SCOI2005]骑士精神——IDA*

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1085 搜索,IDA*,估价就是最少需要跳的步数: 代码意外地挺好写的,memcmp 用起来好 ...

  7. bzoj 1085 [SCOI2005]骑士精神——IDA*

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1085 迭代加深搜索. 估价函数是为了预计步数来剪枝,所以要优于实际步数. 没错,不是为了确定 ...

  8. 【洛谷】2324:[SCOI2005]骑士精神【IDA*】

    P2324 [SCOI2005]骑士精神 题目描述 输入输出格式 输入格式: 第一行有一个正整数T(T<=10),表示一共有N组数据.接下来有T个5×5的矩阵,0表示白色骑士,1表示黑色骑士,* ...

  9. BZOJ1085: [SCOI2005]骑士精神 [迭代加深搜索 IDA*]

    1085: [SCOI2005]骑士精神 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1800  Solved: 984[Submit][Statu ...

随机推荐

  1. 文件锁简单操作(lockfileEx\unlockfileEx)

    #include "stdafx.h"#include <Windows.h>#include <iostream> using namespace std ...

  2. mysql的默认隔离级别

    原文:https://www.cnblogs.com/rjzheng/p/10510174.html 知识点总结 ------------------------------------------- ...

  3. 问题:Custom tool error: Failed to generate code for the service reference 'AppVot;结果:添加Service Reference, 无法为服务生成代码错误的解决办法

    添加Service Reference, 无法为服务生成代码错误的解决办法 我的解决方案是Silverlight+WCF的应用,Done Cretiria定义了需要在做完Service端的代码后首先运 ...

  4. C#理解泛型(源代码)及 default(T)

    1.类型不安全.且代码无法遍历重用的源代码. 2.泛型源代码 源代码下载: http://files.cnblogs.com/files/qqhfeng/ConsoleApplication1.rar

  5. JVM实用参数(一)JVM类型以及编译器模式

    JVM实用参数(一)JVM类型以及编译器模式 原文地址:https://blog.codecentric.de/en/2012/07/useful-jvm-flags-part-1-jvm-types ...

  6. solr-用mmseg4j配置同义词索引和检索(IKanlyzer需要修改源码适应solr接口才能使用同义词功能)

    概念说明:同义词大体的意思是指,当用户输入一个词时,solr会把相关有相同意思的近义词的或同义词的term的语段内容从索引中取出,展示给用户,提高交互的友好性(当然这些同义词的定义是要在配置文件中事先 ...

  7. [hadoop入门]mapper与reducer(word_count计数demo)

    1.mapper #!/usr/bin/env python import sys for line in sys.stdin: line = line.strip() words = line.sp ...

  8. IFC—IfcProduct实体继承框架

  9. Verilog 语言 001 --- 入门级 --- 编写一个半加器电路模块

    Verilog 语言编写一个 半加器 电路模块 半加器 的电路结构: S = A 异或 B C = A 与 B 1. 程序代码 module h_adder (A, B, SO, CO); input ...

  10. Luogu 3168 [CQOI2015]任务查询系统

    区间修改单点查询,又观察到是一个k小,考虑主席树上做差分 一开始样例疯狂挂,后来发现主席树在一个历史版本上只能修改一次,所以要开2*n个根结点,记录一下每个时间对应的根结点编号 然后80分,考虑到当一 ...