B君的第九题

对于一个排列\(a_1, a_2,\dots,a_n\),如果对于一个i满足\(a_{i-1}<a_i>a_i+1\)则称i是一个极大值。我们认为\(a_0=a_{n+1}=0\)。考虑\(1,2,\dots,n\)的所有排列,问有多少个排列恰好有m个极大值。输出答案对p取模的结果。\(1\le n\le10^9, 1\le m\le10, 2\le p\le1001\)

对于统计排列数,其实没有必要按照给出的a的顺序来dp,可以先把a从小到大排序,然后用\(f[i][j]\)表示dp到第i个数,有j个山峰的方案数。由于当前数大于之前序列的所有数,考虑把它插入序列。如果它插在山峰旁边,那么山峰个数仍然不变,否则山峰个数会加一个。因此\(f[i][j]=f[i-1][j]*2j+f[i-1][j-1]*(i-2*(j-1))\)。

但是这个式子和i有关,没法用矩阵乘法优化dp。怎么办呢?由于所有运算都是在模p意义下的,所以说直接对于i=1到p先把矩阵暴力求出来,然后用矩阵快速幂即可!

#include <cstdio>
#include <cstring>
using namespace std; const int maxn=1e3+5, maxm=12;
int n, m, p;
inline void up(int &x, int y){ x+=y-p; x+=(x<0?p:0); } struct Matrix{
int a[maxm][maxm];
}g[maxn], re, c, ans;
Matrix& operator *(const Matrix &a, const Matrix &b){
memset(re.a, 0, sizeof(re.a));
for (int i=0; i<=m; ++i)
for (int j=0; j<=m; ++j)
for (int k=0; k<=m; ++k)
up(re.a[i][j], a.a[i][k]*b.a[k][j]%p);
return re;
} int main(){
scanf("%d%d%d", &n, &m, &p);
for (int i=0; i<=m; ++i) c.a[i][i]=1, ans.a[i][i]=1;
for (int i=1; i<=p; ++i){
for (int j=0; j<m; ++j){
//if (i-2*j<0) break; //?
g[i].a[j][j]=2*j%p,
g[i].a[j][j+1]=((i-2*j)%p+p)%p;
}
g[i].a[m][m]=2*m%p;
c=c*g[i];
}
int mi=n/p;
for (; mi; c=c*c, mi>>=1) if (mi&1) ans=ans*c;
for (int i=1; i<=n%p; ++i) ans=ans*g[i];
printf("%d\n", ans.a[0][m]);
return 0;
}

B君的第九题的更多相关文章

  1. test20181020 B君的第二题

    题意 分析 考场70分 一看就是裸的kmp,直接打上去. #include<cstdlib> #include<cstdio> #include<cmath> #i ...

  2. B 君的第二题 (hongkong)

    B 君的第二题 (hongkong) 题目大意: 一个长度为\(n(n\le2\times10^5)\)的数组,给定一个数\(k(k\le40)\).用\(a[i][j]\)表示该数组\(i\)次前缀 ...

  3. CTF---Web入门第九题 FALSE

    FALSE分值:10 来源: iFurySt 难度:易 参与人数:4567人 Get Flag:2144人 答题人数:2157人 解题通过率:99% PHP代码审计 hint:sha1函数你有认真了解 ...

  4. test20181017 B君的第一题

    题意 分析 考场做法 对p的幂打表发现,我们一定可以把x和y的二进制位从低到高依次调整成0. 具体而言,从0次幂开始每两个分为一组a,b,那么0,a,b,a+b组合中的一种可以将x,y的对应二进制位都 ...

  5. leetcode第九题--Palindrome Number

    Problem: Determine whether an integer is a palindrome. Do this without extra space. click to show sp ...

  6. test20181016 B君的第二题

    题意 分析 考场暴力50分. 考虑bfs序,一个点的儿子节点的bfs序一定连续,所以对bfs序建线段树,努力打一下就行了. 时间复杂度\(O(n \log n + m \log n)\) #inclu ...

  7. test20181017 B君的第二题

    题意 分析 考场50分 旁边的L君告诉我,求的就是非升子序列的个数,于是写了个树状数组. 但是\(\mod{2333} > 0\)还需要组合数中没有2333的倍数,所以实际上只得了\(a_i \ ...

  8. test20181018 B君的第一题

    题意 分析 考场爆零做法 考虑dp,用\(f(i,j,0/1)\)表示i及其子树中形成j个边连通块的方案数,其中i是否向外连边. \(O(n^3)\),转移方程太复杂就打挂了. #include< ...

  9. leetcode 第九题 Palindrome Number(java)

    Palindrome Number time=434ms 负数不是回文数 public class Solution { public boolean isPalindrome(int x) { in ...

随机推荐

  1. Hanoi双塔问题(递推)

    Hanoi双塔问题 时间限制: 1 Sec  内存限制: 128 MB提交: 10  解决: 4[提交][状态][讨论版][命题人:外部导入] 题目描述 给定A,B,C三根足够长的细柱,在A柱上放有2 ...

  2. 【转】前端上传组件Plupload使用指南

    http://www.cnblogs.com/2050/p/3913184.html Plupload有以下功能和特点: 1.拥有多种上传方式:HTML5.flash.silverlight以及传统的 ...

  3. 下拉框改变事件:获取下拉框中当前选择的文本 SelectionChanged事件

    /// <summary> /// 下拉框改变事件:获取下拉框中当前选择的文本 /// </summary> /// <param name="sender&q ...

  4. paramiko远程执行命令成功

  5. HDLM工具介绍

    HDLM提供了以下一些工具,以方便HDLM多路径管理. 1. dlmgetras hdlm信息收集工具,用来收集hdlm相关的各种日志.trace.配置等文件,以方便进行hdlm故障分析. 命令格式 ...

  6. 最全SDWebImage-3.8版本源码阅读详解

    一.前言 SDWebImage,非常友好的网络图片加载第三方框架,在GitHub中已经获得了15000++的star,链接地址:https://github.com/rs/SDWebImage 本人分 ...

  7. openGL 预定义变量04

    OpenGL4.0 GLSL预定义变量 GLSL为不同的渲染阶段定义了一些特定的变量.这些预定义(也叫做内置变量)有特定的属性. 所有的预定义变量都以gl_开头.用户定义的变量不能以此开头. 下面分类 ...

  8. matlab学习笔记(3)

    数据分析: 多项式: 多项式表示:p = [1 2 3 0]; //表示 1*x^3+2*x^2+3*x^1+0 ,系数从高次向低次项,0系数不能省略. roots函数:求解多项式的根.roots(p ...

  9. Windows平台上通过git下载github的开源代码

    常见指令整理: (1)检查ssh密钥是否已经存在.GitBash. 查看是否已经有了ssh密钥:cd ~/.ssh.示例中说明已经存在密钥 (2)生成公钥和私钥 $ ssh-keygen -t rsa ...

  10. import json