小H和小Z正在玩一个取石子游戏。 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,
每次取石子的个数有限制,谁不能取石子时就会输掉游戏。 小H先进行操作,他想问你他是否有必胜策略,如果有
,第一步如何取石子。

Sample OutputYES 1 1 Hint 样例中共有四堆石子,石子个数分别为7、6、9、3,每人每次可以从任何一堆石子中取出1个或者2个石子,小H有 必胜策略,事实上只要从第一堆石子中取一个石子即可。

Input

输入文件的第一行为石子的堆数N 
接下来N行,每行一个数Ai,表示每堆石子的个数 接下来一行为每次取石子个数的种类数M 
接下来M行,每行一个数Bi,表示每次可以取的石子个数,
输入保证这M个数按照递增顺序排列。
N≤10
Ai≤1000
对于全部数据,M≤10,Bi≤10

Output

输出文件第一行为“YES”或者“NO”,表示小H是否有必胜策略。 
若结果为“YES”,则第二行包含两个数,第一个数表示从哪堆石子取,第二个数表示取多少个石子,
若有多种答案,取第一个数最小的答案,
若仍有多种答案,取第二个数最小的答案。

Sample Input4
7
6
9
3
2
1
2

 
首先算出sg函数;
数据范围较小,直接计算即可;
如果所有a[ i ] 的sg函数=0,那么此时就NO;
否则就为 YES,这时我们只需枚举遍历即可;
注意一点:运算符优先级问题,^的时候要加();
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#pragma GCC optimize(2)
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 100005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n, m;
int a[maxn], b[maxn];
bool vis[maxn];
int sg[maxn]; void SG() {
for (int i = 1; i <= 2000; i++) {
ms(vis);
for (int j = 1; j <= m; j++) {
if (i - b[j] >= 0)vis[sg[i - b[j]]] = 1;
}
for (int j = 0; j <= 10; j++)
if (vis[j] == 0) {
sg[i] = j; break;
}
}
} int main()
{
//ios::sync_with_stdio(0);
rdint(n);
for (int i = 1; i <= n; i++)rdint(a[i]);
rdint(m);
for (int i = 1; i <= m; i++)rdint(b[i]);
SG();
int ans = 0;
for (int i = 1; i <= n; i++)ans ^= sg[a[i]];
if (ans == 0)cout << "NO" << endl;
else {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (a[i] - b[j] >= 0) {
if ((ans ^ (sg[a[i]]) ^ (sg[a[i] - b[j]])) == 0) {
cout << "YES" << endl;
cout << i << ' ' << b[j] << endl; return 0;
}
}
}
}
}
return 0;
}
 

取石子游戏 BZOJ1874 博弈的更多相关文章

  1. HDU 2516 取石子游戏(FIB博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  2. 【BZOJ1413】取石子游戏(博弈,区间DP)

    题意:在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中 ...

  3. hdu 2516 取石子游戏 (Fibonacci博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  4. [bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论

    取石子游戏 bzoj-1874 BeiJing2009 WinterCamp 题目大意:题目链接. 注释:略. 想法: 我们通过$SG$函数的定义来更新$SG$的转移. 如果是寻求第一步的话我们只需要 ...

  5. HDU 2516 取石子游戏(斐波那契博弈)

    取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...

  6. 取石子游戏(hdu1527 博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  7. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  8. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

  9. bzoj1874 [BeiJing2009 WinterCamp]取石子游戏

    1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 925  Solved: 381[ ...

随机推荐

  1. 问题:C#Chart控件自动添加Series;结果:图形组件Chart动态添加Series

    Chart1.DataSource = dtb; string[] strcolor = new string[20]; strcolor[0] = "220, 224, 64, 10&qu ...

  2. numpy.percentile

    http://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html numpy.percentile(a, q, axi ...

  3. AFNetworking-2.5-源码阅读剖析--网络请求篇

    一.前言 AFNetworking,非常友好简单的网络请求第三方框架,在GitHub中已经获得了25000++的star,链接地址:https://github.com/AFNetworking/AF ...

  4. vs中ffmpeg release版本崩溃问题(转)

    vs2010 win7 下开发视频服务器,用到ffmpeg,debug版本运行正常,切换到release时,出现"0x00905a4d 处未处理的异常: 0xC0000005: 读取位置 0 ...

  5. -bash : ** : command not found的问题解决(图文详解)

    问题来源 我不小心,配置错了,少了个export和PATH没配对.   source /etc/profile 之前一定要留心,否则出错让你后悔去! 问题导致现象1 问题导致现象2 解决办法 按e键, ...

  6. junit4新框架hamcrest的assertThat

    assertThat JUnit4.4引入了Hamcrest框架,Hamcest提供了一套匹配符Matcher,这些匹配符更接近自然语言,可读性高,更加灵活 /**equalTo匹配符断言被测的tes ...

  7. 【转】webService概述

    一.序言: 大家或多或少都听过WebService(Web服务),有一段时间很多计算机期刊.书籍和网站都大肆的提及和宣传WebService技术,其中不乏很多吹嘘和做广告的成分.但是不得不承认的是We ...

  8. extends与implements

    implements一般是实现接口. extends 是继承类. 接口一般是只有方法声明没有定义的, 那么java特别指出实现接口是有道理的,因为继承就有感觉是父类已经实现了方法,而接口恰恰是没有实现 ...

  9. 多线程 wait(),notify()方法,案例总结

    废话不多说,案例如下 package com.xujingyang.Exok; /** * 商品类 * @author 徐景洋 */ public class Goods { private Stri ...

  10. koa的跨域访问

    koa跨域访问:1.安装插件 npm install koa-cors --save-dev2.项目的app.js中var cors = require('koa-cors'); app.use(co ...