取石子游戏 BZOJ1874 博弈
Sample OutputYES 1 1 Hint 样例中共有四堆石子,石子个数分别为7、6、9、3,每人每次可以从任何一堆石子中取出1个或者2个石子,小H有 必胜策略,事实上只要从第一堆石子中取一个石子即可。
Ai≤1000
Output
Sample Input4
7
6
9
3
2
1
2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#pragma GCC optimize(2)
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 100005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n, m;
int a[maxn], b[maxn];
bool vis[maxn];
int sg[maxn]; void SG() {
for (int i = 1; i <= 2000; i++) {
ms(vis);
for (int j = 1; j <= m; j++) {
if (i - b[j] >= 0)vis[sg[i - b[j]]] = 1;
}
for (int j = 0; j <= 10; j++)
if (vis[j] == 0) {
sg[i] = j; break;
}
}
} int main()
{
//ios::sync_with_stdio(0);
rdint(n);
for (int i = 1; i <= n; i++)rdint(a[i]);
rdint(m);
for (int i = 1; i <= m; i++)rdint(b[i]);
SG();
int ans = 0;
for (int i = 1; i <= n; i++)ans ^= sg[a[i]];
if (ans == 0)cout << "NO" << endl;
else {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (a[i] - b[j] >= 0) {
if ((ans ^ (sg[a[i]]) ^ (sg[a[i] - b[j]])) == 0) {
cout << "YES" << endl;
cout << i << ' ' << b[j] << endl; return 0;
}
}
}
}
}
return 0;
}
取石子游戏 BZOJ1874 博弈的更多相关文章
- HDU 2516 取石子游戏(FIB博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- 【BZOJ1413】取石子游戏(博弈,区间DP)
题意:在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中 ...
- hdu 2516 取石子游戏 (Fibonacci博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- [bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论
取石子游戏 bzoj-1874 BeiJing2009 WinterCamp 题目大意:题目链接. 注释:略. 想法: 我们通过$SG$函数的定义来更新$SG$的转移. 如果是寻求第一步的话我们只需要 ...
- HDU 2516 取石子游戏(斐波那契博弈)
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...
- 取石子游戏(hdu1527 博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- POJ.1067 取石子游戏 (博弈论 威佐夫博弈)
POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...
- HDU.2516 取石子游戏 (博弈论 斐波那契博弈)
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...
- bzoj1874 [BeiJing2009 WinterCamp]取石子游戏
1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 925 Solved: 381[ ...
随机推荐
- Drools学习笔记4—Consequence/RHS
Right Hand Side,当LHS所有条件满足才会执行 可以使用LHS部分定义的绑定变量.全局变量.或者直接编写JAVA代码. 提供宏函数操作working memory fact对象,如ins ...
- 1107SQLserver基础--语句、存储过程
[随堂练习]--查询‘李数’老师教的数学成绩大于80分的学生的信息, 并且人数大于3的话,输出达标:否则输出不达标. 存储过程 --带参数的程序代码块---代表执行命令存储在数据库中,存储代码,没有调 ...
- vsftp部署和优化错误
ftp登录失败 vim /etc/vsftpd/vsftpd.conf 添加虚拟机配置的时候有空行,删除空行解决
- C# WinForm中如何让当前应用程序只允许启动一个实例
我们在WinForm开发中,很多情况下是需要只允许让用户运行一个实例,那么代码其实很简单.只需要修改Program.cs文件,代码如下 static class Program { /// <s ...
- CUDA编程接口:异步并发执行的概念和API
1.主机和设备间异步执行 为了易于使用主机和设备间的异步执行,一些函数是异步的:在设备完全完成任务前,控制已经返回给主机线程了.它们是: 内核发射; 设备间数据拷贝函数; 主机和设备内拷贝小于64KB ...
- 【总结整理】行内标签span设置position:absolute/float属性可以设置宽度与高度
postion:absolute 跳出文本流,不是行内元素,设置宽高有效,我的理解. 引用下曹刘阳写的<编写高质量代码-web前端开发修炼之道>一书中看到的一句话:position:abs ...
- sequelize 用于PostgreSQL,MySQL,SQLite和MSSQL的Node.js / io.js ORM
安装 Sequelize可通过NPM获得. $ npm install --save sequelize # And one of the following: $ npm install --sav ...
- Python 安装 django框架
1.安装 pip install django 2.创建项目 d:/www/django文件夹下右键->打开dos窗口 输入: python C:\ProgramData\Miniconda3\ ...
- 如何使CPU占用率为50%
在Linux下,CPU的状态分为系统态,用户态和空闲态,分别指系统内核执行时间,处于用户态的时间和空闲系统进程执行的时间.三者之和就是CPU的总时间. CPU的利用率就是非空闲进程占用时间的比例. 1 ...
- Overloaded的方法是否可以改变返回值的类型
摘要: 重载Overload表示同一个类中可以有多个名称相同的方法,但这些方法的参数列表各不相同(即参数个数或类型不同) Overload是重载的意思,Override是覆盖的意思,也就是重写. 重载 ...