树状数组【bzoj1782】: [Usaco2010 Feb]slowdown 慢慢游
【bzoj1782】: [Usaco2010 Feb]slowdown 慢慢游
Description
每天Farmer John的N头奶牛(1 <= N <= 100000,编号1…N)从粮仓走向他的自己的牧场。牧场构成了一棵树,粮仓在1号牧场。恰好有N-1条道路直接连接着牧场,使得牧场之间都恰好有一条路径相连。第i条路连接着A_i,B_i,(1 <= A_i <= N; 1 <= B_i <= N)。奶牛们每人有一个私人牧场P_i (1 <= P_i <= N)。粮仓的门每次只能让一只奶牛离开。耐心的奶牛们会等到他们的前面的朋友们到达了自己的私人牧场后才离开。首先奶牛1离开,前往P_1;然后是奶牛2,以此类推。当奶牛i走向牧场P_i时候,他可能会经过正在吃草的同伴旁。当路过已经有奶牛的牧场时,奶牛i会放慢自己的速度,防止打扰他的朋友。
网上正统做法是线段树。
树状数组也可以,很容易写。
按照dfn序建树。
code:
#include <iostream>
#include <cstdio>
using namespace std;
const int wx=200017;
inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
}
int sum[wx],dfn[wx];
int head[wx],num,size[wx];
int n,m,tot;
struct e{
int nxt,to;
}edge[wx*2];
void add(int from,int to){
edge[++num].nxt=head[from];
edge[num].to=to;
head[from]=num;
}
void dfs(int u,int fa){
dfn[u]=++tot;size[u]=1;
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==fa)continue;
dfs(v,u);size[u]+=size[v];
}
}
void Add(int pos,int k){
for(int i=pos;i<=n;i+=(i&-i)){
sum[i]+=k;
}
}
int query(int x){
int re=0;
for(int i=x;i>=1;i-=(i&-i)){
re+=sum[i];
}
return re;
}
int main(){
n=read();
for(int i=1;i<n;i++){
int x,y;
x=read(); y=read();
add(x,y); add(y,x);
}
dfs(1,0);
for(int i=1;i<=n;i++){
int x;x=read();
printf("%d\n",query(dfn[x]));
Add(dfn[x],1);Add(dfn[x]+size[x],-1);
}
return 0;
}
树状数组【bzoj1782】: [Usaco2010 Feb]slowdown 慢慢游的更多相关文章
- BZOJ1782: [Usaco2010 Feb]slowdown 慢慢游
1782: [Usaco2010 Feb]slowdown 慢慢游 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 541 Solved: 326[Sub ...
- [bzoj 1782] [Usaco2010 Feb]slowdown慢慢游
[bzoj 1782] [Usaco2010 Feb]slowdown慢慢游 Description 每天Farmer John的N头奶牛(1 <= N <= 100000,编号1-N)从 ...
- 1782: [Usaco2010 Feb]slowdown 慢慢游
1782: [Usaco2010 Feb]slowdown 慢慢游 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 570 Solved: 346[Sub ...
- BZOJ 1782: [Usaco2010 Feb]slowdown 慢慢游( BIT + dfs )
orz...hzwer 对着大神的 code 看 , 稍微理解了. 考虑一只牛到达 , 那它所在子树全部 +1 , 可以用BIT维护 --------------------------------- ...
- 【BZOJ】1782: [Usaco2010 Feb]slowdown 慢慢游
[算法]DFS序+树状数组 [题解]题意相当于统计前i-1个点在第i个点的祖先的个数,显然可以用dfs维护,用树状数组差分维护前缀和. 出栈不新加节点就要注意左闭右开,即in[a[i]]处+1,ou[ ...
- BZOJ 1782 洛谷 2982 [Usaco2010 Feb]slowdown 慢慢游
[题解] 一头牛走到i,相当于把i点的子树的点权都加1,查询减慢的次数就是查询目的地的点权. 预处理dfs序,某个点的子树的dfs序是连续的一段.差分后用树状数组维护,变成点修区查.或者直接线段树区修 ...
- 【bzoj1782】[Usaco2010 Feb]slowdown 慢慢游 树链剖分+线段树
题目描述 每天Farmer John的N头奶牛(1 <= N <= 100000,编号1…N)从粮仓走向他的自己的牧场.牧场构成了一棵树,粮仓在1号牧场.恰好有N-1条道路直接连接着牧场, ...
- bzoj 1782: [Usaco2010 Feb]slowdown 慢慢游【dfs序+线段树】
考虑每头牛到达之后的影响,u到达之后,从1到其子树内的点需要放慢的都多了一个,p为u子树内点的牛ans会加1 用线段树维护dfs序,每次修改子树区间,答案直接单点查询p即可 #include<i ...
- [bzoj4994][Usaco2017 Feb]Why Did the Cow Cross the Road III_树状数组
Why Did the Cow Cross the Road III bzoj-4994 Usaco-2017 Feb 题目大意:给定一个长度为$2n$的序列,$1$~$n$个出现过两次,$i$第一次 ...
随机推荐
- 环形缓冲区的应用ringbuffer
在嵌入式开发中离不开设备通信,而在通信中稳定性最高的莫过于环形缓冲区算法, 当读取速度大于写入速度时,在环形缓冲区的支持下不会丢掉任何一个字节(硬件问题除外). 在通信程序中,经常使用环形缓冲区作为数 ...
- Celery-4.1 用户指南: Canvas: Designing Work-flows(设计工作流程)
签名 2.0 版本新特性. 刚刚在calling 这一节中学习了使用 delay 方法调用任务,并且通常这就是你所需要的,但是有时候你可能想将一个任务调用的签名传递给另外一个进程或者作为另外一个函数的 ...
- Python类(八)-类的起源
首先用type()看一下类和实例化对象的类型 # -*- coding:utf-8 -*- __author__ = "MuT6 Sch01aR" class Person(obj ...
- 11-15SQLserver基础--数据库之范式理论
数据库的设计理论与思路 在设计数据库的时候,有一个著名的设计理论---范式理论. 1.内容: 第一范式:每一列的数据类型要单一,必须要统一: 第二范式:在设计主键的时候,主键尽量更能体现表中的数据信息 ...
- intellij idea打包springboot项目
一.可执行jar包 注意点: maven的package类型需要为jar 配置了spring-boot-mavne-plugin插件 1.1.pom.xml <?xml version=&quo ...
- hibernate学习笔记(4)表单操作
User.hbm.xml的表单配置: ①主键 <id name="id" type="java.lang.Integer"> <column ...
- redis的特性
- sys模块 进度条百分比
用于提供对Python解释器相关的操作: sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0) ...
- 关于android中,菜单按钮点击事件首次执行之后再次执行需要双击按钮的问题
有时候在获取事件的时候,需要双击才能获取,解决方法很简单,把返回值设为true,那么这个事件就不会再分发了,我预计是设为其他值会继续分发,造成事件的相应混乱
- ruby 数组与散列
def say_goodnight(name) result ="Good night ." +name return result end def say_goodmorning ...