题目描述

Farmer John has grown so lazy that he no longer wants to continue maintaining the cow paths that currently provide a way to visit each of his N (5 <= N <= 10,000) pastures (conveniently numbered 1..N). Each and every pasture is home to one cow. FJ plans to remove as many of the P (N-1 <= P <= 100,000) paths as possible while keeping the pastures connected. You must determine which N-1 paths to keep.

Bidirectional path j connects pastures S_j and E_j (1 <= S_j <= N; 1 <= E_j <= N; S_j != E_j) and requires L_j (0 <= L_j <= 1,000) time to traverse. No pair of pastures is directly connected by more than one path.

The cows are sad that their transportation system is being reduced. You must visit each cow at least once every day to cheer her up. Every time you visit pasture i (even if you're just traveling

through), you must talk to the cow for time C_i (1 <= C_i <= 1,000).

You will spend each night in the same pasture (which you will choose) until the cows have recovered from their sadness. You will end up talking to the cow in the sleeping pasture at least in the morning when you wake up and in the evening after you have returned to sleep.

Assuming that Farmer John follows your suggestions of which paths to keep and you pick the optimal pasture to sleep in, determine the minimal amount of time it will take you to visit each cow at least once in a day.

For your first 10 submissions, you will be provided with the results of running your program on a part of the actual test data.

POINTS: 300

约翰有N个牧场,编号依次为1到N。每个牧场里住着一头奶牛。连接这些牧场的有P条道路,每条道路都是双向的。第j条道路连接的是牧场Sj和Ej,通行需要Lj的时间。两牧场之间最多只有一条道路。约翰打算在保持各牧场连通的情况下去掉尽量多的道路。

约翰知道,在道路被强拆后,奶牛会非常伤心,所以他计划拆除道路之后就去忽悠她们。约翰可以选择从任意一个牧场出发开始他维稳工作。当他走访完所有的奶牛之后,还要回到他的出发地。每次路过牧场i的时候,他必须花Ci的时间和奶牛交谈,即使之前已经做过工作了,也要留下来再谈一次。注意约翰在出发和回去的时候,都要和出发地的奶牛谈一次话。请你计算一下,约翰要拆除哪些道路,才能让忽悠奶牛的时间变得最少?

输入输出格式

输入格式:

  • Line 1: Two space-separated integers: N and P

  • Lines 2..N+1: Line i+1 contains a single integer: C_i

  • Lines N+2..N+P+1: Line N+j+1 contains three space-separated

integers: S_j, E_j, and L_j

输出格式:

  • Line 1: A single integer, the total time it takes to visit all the cows (including the two visits to the cow in your

sleeping-pasture)

输入输出样例

输入样例#1:

5 7
10
10
20
6
30
1 2 5
2 3 5
2 4 12
3 4 17
2 5 15
3 5 6
4 5 12
输出样例#1:

176

说明

   +-(15)-+
/ \
/ \
1-(5)-2-(5)-3-(6)--5
\ /(17) /
(12)\ / /(12)
4------+ Keep these paths:
1-(5)-2-(5)-3 5
\ /
(12)\ /(12)
*4------+

Wake up in pasture 4 and visit pastures in the order 4, 5, 4, 2, 3, 2, 1, 2, 4 yielding a total time of 176 before going back to sleep.

 //元林大兄弟的 水题
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
#define maxn 100010
#define maxnn 10005
int n,m,cost[maxnn],tot,fa[maxnn];
struct Edge{
int to,value,from;
bool operator < (const Edge &a) const {
return value<a.value;
}
}e[maxn*];
long long ans=;
int find(int x){
if(fa[x]==x)return x;
else return fa[x]=find(fa[x]);
}
int min(int a,int b){
if(a>b)return b;
else return a;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%d",&cost[i]);
ans=min(ans,cost[i]);
}
for(int i=,u,v,w;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
e[i].to=v;e[i].from=u;
e[i].value=cost[u]+cost[v]+w*;
}
for(int i=;i<=n;i++)fa[i]=i;
sort(e+,e+m+);
for(int i=;i<=m;i++){
int rx=find(e[i].from),ry=find(e[i].to);
if(rx!=ry){
fa[rx]=ry;
ans+=e[i].value;
}
}
printf("%d\n",ans);
return ;
}

洛谷 P2916 [USACO08NOV]为母牛欢呼Cheering up the C…的更多相关文章

  1. 洛谷 P2916 [USACO08NOV]为母牛欢呼Cheering up the Cows

    题目描述 Farmer John has grown so lazy that he no longer wants to continue maintaining the cow paths tha ...

  2. 洛谷——P2916 [USACO08NOV]为母牛欢呼Cheering up the Cows

    https://www.luogu.org/problem/show?pid=2916 题目描述 Farmer John has grown so lazy that he no longer wan ...

  3. 洛谷P2916 [USACO08NOV]为母牛欢呼(最小生成树)

    P2916 [USACO08NOV]为母牛欢呼Cheering up the C… 题目描述 Farmer John has grown so lazy that he no longer wants ...

  4. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 解题报告

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题意: 给定一个长\(N\)的序列,求满足任意两个相邻元素之间的绝对值之差不超过\(K\)的这个序列的排列有多少个? 范围: ...

  5. 洛谷P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  6. 洛谷——P2919 [USACO08NOV]守护农场Guarding the Farm

    P2919 [USACO08NOV]守护农场Guarding the Farm 题目描述 The farm has many hills upon which Farmer John would li ...

  7. 洛谷——P2846 [USACO08NOV]光开关Light Switching

    P2846 [USACO08NOV]光开关Light Switching 题目大意: 灯是由高科技——外星人鼠标操控的.你只要左击两个灯所连的鼠标, 这两个灯,以及之间的灯都会由暗变亮,或由亮变暗.右 ...

  8. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  9. 洛谷 P2918 [USACO08NOV]买干草Buying Hay 题解

    P2918 [USACO08NOV]买干草Buying Hay 题目描述 Farmer John is running out of supplies and needs to purchase H ...

随机推荐

  1. 对Neural Machine Translation by Jointly Learning to Align and Translate论文的详解

    读论文 Neural Machine Translation by Jointly Learning to Align and Translate 这个论文是在NLP中第一个使用attention机制 ...

  2. python-7面向对象高级编程

    1-给类动态增加方法 class Student(object): pass def set_score(self, score): self.score = score Student.set_sc ...

  3. Android面试收集录6 事件分发机制

    转自:秋招面试宝典. 一. 基础认知 1.1 事件分发的对象是谁? 答:事件 当用户触摸屏幕时(View或ViewGroup派生的控件),将产生点击事件(Touch事件). Touch事件相关细节(发 ...

  4. MethodTrace 生成的trace文件为空

    今天我准备生成一个trace文件,看看程序卡在哪里. 一般: Debug.startMethodTracing("yuge"); Debug.stopMethodTracing() ...

  5. Eclipse 窗口说明---Eclipse教程第03课

    Eclipse 工作台(Workbench) 首先,让我们来看一下Eclipse 作台用户界面,和它里面的各种组件. 工作台是多个窗口的集合.每个窗口包含菜单栏,工具栏,快捷方式栏,以及一个或者多个透 ...

  6. QQ空间相册展示特效

    <!doctype html> <html lang="en"> <head> <title>QQ空间相册展示特效<title ...

  7. 《Cracking the Coding Interview》——第18章:难题——题目11

    2014-04-29 04:30 题目:给定一个由‘0’或者‘1’构成的二维数组,找出一个四条边全部由‘1’构成的正方形(矩形中间可以有‘0’),使得矩形面积最大. 解法:用动态规划思想,记录二维数组 ...

  8. 《Cracking the Coding Interview》——第11章:排序和搜索——题目3

    2014-03-21 20:55 题目:给定一个旋转过的升序排序好的数组,不知道旋转了几位.找出其中是否存在某一个值. 解法1:如果数组的元素都不重复,那么我的解法是先找出旋转的偏移量,然后进行带偏移 ...

  9. ubuntu下eclipse 安装记录

    基本是参考:http://www.metsky.com/archives/611.html 完成. 中间遇到小问题,在此记录下,方便遇到同样问题的难友. 先说下快速打开命令行快捷键:Ctrl+Alt+ ...

  10. Oracle 监听/数据库 启动/关闭

    LSNRCTL命令启动.关闭和查看监听器的状态的方法 从lsnrctl status命令的输出中得到监听器状态,包括如下的信息: 监听器的启动时间 监听器的运行时间 监听器参数文件listener.o ...