# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,manifold def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #等度量映射Isomap降维模型
def test_Isomap(*data):
X,y=data
# 依次考察降维目标为 4维、3维、2维、1维
for n in [4,3,2,1]:
isomap=manifold.Isomap(n_components=n)
isomap.fit(X)
print('reconstruction_error(n_components=%d) : %s'%(n, isomap.reconstruction_error())) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_Isomap
test_Isomap(X,y)

def plot_Isomap_k(*data):
'''
测试 Isomap 中 n_neighbors 参数的影响,其中降维至 2维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
isomap=manifold.Isomap(n_components=2,n_neighbors=k)
#原始数据集转换到二维
X_r=isomap.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 Isomap 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("Isomap")
plt.show() # 调用 plot_Isomap_k
plot_Isomap_k(X,y)

def plot_Isomap_k_d1(*data):
'''
测试 Isomap 中 n_neighbors 参数的影响,其中降维至 1维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
isomap=manifold.Isomap(n_components=1,n_neighbors=k)
#原始数据集转换到 1 维
X_r=isomap.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 Isomap 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position],np.zeros_like(X_r[position]),label="target= %d"%label,color=color)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("Isomap")
plt.show() # 调用 plot_Isomap_k_d1
plot_Isomap_k_d1(X,y)

吴裕雄 python 机器学习——等度量映射Isomap降维模型的更多相关文章

  1. 吴裕雄 python 机器学习——局部线性嵌入LLE降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  2. 吴裕雄 python 机器学习——主成份分析PCA降维

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  3. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  4. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

  5. 吴裕雄 python 机器学习——数据预处理二元化Binarizer模型

    from sklearn.preprocessing import Binarizer #数据预处理二元化Binarizer模型 def test_Binarizer(): X=[[1,2,3,4,5 ...

  6. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  9. 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

随机推荐

  1. Linux驱动 - SPI驱动 之三 SPI控制器驱动

    通过第一篇文章,我们已经知道,整个SPI驱动架构可以分为协议驱动.通用接口层和控制器驱动三大部分.其中,控制器驱动负责最底层的数据收发工作,为了完成数据的收发工作,控制器驱动需要完成以下这些功能:1. ...

  2. (转)基于PHP——简单的WSDL的创建(WSDL篇)

    本文转载自:http://blog.csdn.net/rrr4578/article/details/24451943 1.建立WSDL文件     建立WSDL的工具很多,eclipse.zends ...

  3. 2018年长沙理工大学第十三届程序设计竞赛 H数学考试

    链接:https://www.nowcoder.com/acm/contest/96/H来源:牛客网 数学考试 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...

  4. 我和domino不得不说的故事(连载2016-3-2)

    1.关于NotesViewEntry 注意:通过NotesViewEntry获取某列的值时,若该列的值为@IsExpandable or @DocNumber 或者是常量时,将不会显示. Set en ...

  5. maven jetty 配置

    对于jdk8增加如下配置: <plugin> <groupId>org.eclipse.jetty</groupId> <artifactId>jett ...

  6. linux 权限 homework

    作业一: 1) 新建用户natasha,uid为1000,gid为555,备注信息为“master” useradd natasha -u 1000 -g 555 -c "master&qu ...

  7. C语言学习笔记--C语言中的宏定义

    1. C 语言中的宏定义 (1)#define 是预处理器处理的单元实体之一(因此,预处理器只是简单的进行替换,并不(2)#define 定义的宏可以出现在程序的任意位置(包括函数体的内部)(3)#d ...

  8. 阿里云服务器访问github慢临时解决方法

    su root vi /etc/hosts # github 204.232.175.78 http://documentcloud.github.com 207.97.227.239 http:// ...

  9. GET与POST方法

    HTTP中的GET,POST,PUT,DELETE对应着对这个资源的查,改,增,删4个操作.GET一般用于获取/查询资源信息,而POST一般用于更新资源信息. 1.根据HTTP规范,GET用于信息获取 ...

  10. elmah数据库sql脚本

    /* 错误管理工具 SQL代码 */CREATE TABLE dbo.ELMAH_Error( ErrorId UNIQUEIDENTIFIER NOT NULL, Application NVARC ...