标题:《Rich feature hierarchies for accurate object detection and semantic segmentation》

时间:2014

出版源:CVPR 2014

主要链接:

R-CNN 创新点:

  • 使用CNN(ConvNet)对 region proposals 计算 feature vectors。从经验驱动特征(SIFT、HOG)到数据驱动特征(CNN feature map),提高特征对样本的表示能力。
  • 采用大样本下(ILSVRC)有监督预训练和小样本(PASCAL)微调(fine-tuning)的方法解决小样本难以训练甚至过拟合等问题。

注:ILSVRC其实就是众所周知的ImageNet的挑战赛,数据量极大;PASCAL数据集(包含目标检测和图像分割等),相对较小。

R-CNN 介绍:

  R-CNN作为R-CNN系列的第一代算法,其实没有过多的使用“深度学习”思想,而是将“深度学习”和传统的“计算机视觉”的知识相结合。比如R-CNN pipeline中的第二步和第四步其实就属于传统的“计算机视觉”技术。使用selective search提取region proposals,使用SVM实现分类。

原论文中R-CNN pipeline只有4个步骤,光看上图无法深刻理解R-CNN处理机制,下面结合图示补充相应文字

  • 预训练模型。选择一个预训练 (pre-trained)神经网络(如AlexNet、VGG)。

  • 重新训练全连接层。使用需要检测的目标重新训练(re-train)最后全连接层(connected layer)。

  • 提取 proposals并计算CNN 特征。利用选择性搜索(Selective Search)算法提取所有proposals(大约2000幅images),调整(resize/warp)它们成固定大小,以满足 CNN输入要求(因为全连接层的限制),然后将feature map 保存到本地磁盘。

  • 训练SVM。利用feature map 训练SVM来对目标和背景进行分类(每个类一个二进制SVM)

  • 边界框回归(Bounding boxes Regression)。训练将输出一些校正因子的线性回归分类器

R-CNN 实验结果:

R-CNN在VOC 2007测试集上mAP达到58.5%,打败当时所有的目标检测算法。

转:目标检测

R-CNN的更多相关文章

  1. RCNN--对象检测的又一伟大跨越 2(包括SPPnet、Fast RCNN)(持续更新)

    继续上次的学习笔记,在RCNN之后是Fast RCNN,但是在Fast RCNN之前,我们先来看一个叫做SPP-net的网络架构. 一,SPP(空间金字塔池化,Spatial Pyramid Pool ...

  2. 行为识别(action recognition)相关资料

    转自:http://blog.csdn.net/kezunhai/article/details/50176209 ================华丽分割线=================这部分来 ...

  3. 【计算机视觉】行为识别(action recognition)相关资料

    ================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/3 ...

  4. CVPR2020:三维实例分割与目标检测

    CVPR2020:三维实例分割与目标检测 Joint 3D Instance Segmentation and Object Detection for Autonomous Driving 论文地址 ...

  5. [原]CentOS7安装Rancher2.1并部署kubernetes (二)---部署kubernetes

    ##################    Rancher v2.1.7  +    Kubernetes 1.13.4  ################ ##################### ...

  6. 利用python进行数据分析2_数据采集与操作

    txt_filename = './files/python_baidu.txt' # 打开文件 file_obj = open(txt_filename, 'r', encoding='utf-8' ...

  7. Django项目:CRM(客户关系管理系统)--81--71PerfectCRM实现CRM项目首页

    {#portal.html#} {## ————————46PerfectCRM实现登陆后页面才能访问————————#} {#{% extends 'king_admin/table_index.h ...

  8. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  9. 使用caffe训练自己的CNN

    现在有这样的一个场景:给一张行人的小矩形框图片, 根据该行人的特征识别出性别. 分析: (1),行人的姿态各异,变化多端.很难提取图像的特定特征 (2),正常人肉眼判别行人的根据是身材比例,头发长度等 ...

  10. CNN for NLP (CS224D)

    斯坦福课程CS224d: Deep Learning for Natural Language Processing lecture13:Convolutional neural networks - ...

随机推荐

  1. url出现特殊字符,需要进行编码

    1) 网络访问请求:中文空格字符编码/解码 stringByAddingPercentEscapesUsingEncoding(只对 `#%^{}[]|\"<> 加空格共14个字 ...

  2. Linux查看物理CPU个数、核数,逻辑CPU个数

    学习swoole的时候,建议开启的worker进程数为cpu核数的1-4倍.于是就学习怎么查看CPU核数 # 查看物理CPU个数 cat /proc/cpuinfo| grep "physi ...

  3. GWT更改元素样式属性

    GWT有时候不像普通网页那样可以自由的添加CSS改变样式,所幸gwt提供了一些底层的方法,通过这些方法来实现DOM操作等.通过gwt部件的getElement()可以取得dom上的元素,这时就能对该元 ...

  4. 蓝桥杯 算法训练 ALGO-140 P1101

    算法训练 P1101 时间限制:1.0s 内存限制:256.0MB    有一份提货单,其数据项目有:商品名(MC).单价(DJ).数量(SL).定义一个结构体prut,其成员是上面的三项数据.在主函 ...

  5. springboot+springcloud config

    参考:sorry,全找不到了,当时没记录,最后后知后觉觉得应该记录,所以后面的都有在asfood父项目中的doc文件夹下记录,望见谅. 1. springconfig server 1.1. pom. ...

  6. 机器学习:PCA(高维数据映射为低维数据 封装&调用)

    一.基础理解 1) PCA 降维的基本原理 寻找另外一个坐标系,新坐标系中的坐标轴以此表示原来样本的重要程度,也就是主成分:取出前 k 个主成分,将数据映射到这 k 个坐标轴上,获得一个低维的数据集. ...

  7. 下拉列表---demo---bai

    select.jsp <%@ page language="java" import="java.util.*" pageEncoding="U ...

  8. redis学习一 大体概述

    redis 命令查找:http://doc.redisfans.com/ 1,redis 技术简介以及疑问      redis是一个开源的,内存存储的数据结构服务器.可以用做数据库,高速缓存和消息队 ...

  9. elastic(7)bulk

    转自:https://www.cnblogs.com/xing901022/p/5339419.html bulk批量导入 批量导入可以合并多个操作,比如index,delete,update,cre ...

  10. 配gzip的过滤器进行压缩解决表单加载慢问题

    一个客户的表单上字段超过五百,经浏览器的调试器发现主要问题是从服务器取数据花费了大量时间,下载内容大小约1.2M,下载时间在10s左右,导致样式加载完大约在17s左右(不清除浏览器缓存).最终考虑利用 ...